NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Marina E.; Misra, Ram; Berenson, Mark – Decision Sciences Journal of Innovative Education, 2022
In the era of artificial intelligence (AI), big data (BD), and digital transformation (DT), analytics students should gain the ability to solve business problems by integrating various methods. This teaching brief illustrates how two such methods--Bayesian analysis and Markov chains--can be combined to enhance student learning using the Analytics…
Descriptors: Bayesian Statistics, Programming Languages, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hoegh, Andrew – Journal of Statistics Education, 2020
While computing has become an important part of the statistics field, course offerings are still influenced by a legacy of mathematically centric thinking. Due to this legacy, Bayesian ideas are not required for undergraduate degrees and have largely been taught at the graduate level; however, with recent advances in software and emphasis on…
Descriptors: Bayesian Statistics, Statistics Education, Introductory Courses, Majors (Students)
Peer reviewed Peer reviewed
Direct linkDirect link
Pullenayegum, Eleanor M.; Guo, Qing; Hopkins, Robert B. – Journal of Statistics Education, 2012
Graduate students in the health sciences who hope to become independent researchers must be able to write up their results at a standard suitable for submission to peer-reviewed journals. Bayesian analyses are still rare in the medical literature, and students are often unclear on what should be included in a manuscript. Whilst there are published…
Descriptors: Bayesian Statistics, Critical Thinking, Graduate Students, Health Sciences