NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Potgieter, Cornelis; Kamata, Akihito; Kara, Yusuf – Grantee Submission, 2017
This study proposes a two-part model that includes components for reading accuracy and reading speed. The speed component is a log-normal factor model, for which speed data are measured by reading time for each sentence being assessed. The accuracy component is a binomial-count factor model, where the accuracy data are measured by the number of…
Descriptors: Reading Rate, Oral Reading, Accuracy, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A.; Tong, Bing – Educational and Psychological Measurement, 2016
A latent variable modeling procedure is discussed that can be used to test if two or more homogeneous multicomponent instruments with distinct components are measuring the same underlying construct. The method is widely applicable in scale construction and development research and can also be of special interest in construct validation studies.…
Descriptors: Models, Statistical Analysis, Measurement Techniques, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
France, Stephen L.; Batchelder, William H. – Educational and Psychological Measurement, 2015
Cultural consensus theory (CCT) is a data aggregation technique with many applications in the social and behavioral sciences. We describe the intuition and theory behind a set of CCT models for continuous type data using maximum likelihood inference methodology. We describe how bias parameters can be incorporated into these models. We introduce…
Descriptors: Maximum Likelihood Statistics, Test Items, Difficulty Level, Test Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Xi, Nuo; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2014
A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Data, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Halpin, Peter F.; Dolan, Conor V.; Grasman, Raoul P. P. P.; De Boeck, Paul – Psychometrika, 2011
The relationship between linear factor models and latent profile models is addressed within the context of maximum likelihood estimation based on the joint distribution of the manifest variables. Although the two models are well known to imply equivalent covariance decompositions, in general they do not yield equivalent estimates of the…
Descriptors: Models, Maximum Likelihood Statistics, Computation, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Bryant, Fred B.; Satorra, Albert – Structural Equation Modeling: A Multidisciplinary Journal, 2012
We highlight critical conceptual and statistical issues and how to resolve them in conducting Satorra-Bentler (SB) scaled difference chi-square tests. Concerning the original (Satorra & Bentler, 2001) and new (Satorra & Bentler, 2010) scaled difference tests, a fundamental difference exists in how to compute properly a model's scaling correction…
Descriptors: Statistical Analysis, Structural Equation Models, Goodness of Fit, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Ryu, Ehri; West, Stephen G. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
In multilevel structural equation modeling, the "standard" approach to evaluating the goodness of model fit has a potential limitation in detecting the lack of fit at the higher level. Level-specific model fit evaluation can address this limitation and is more informative in locating the source of lack of model fit. We proposed level-specific test…
Descriptors: Structural Equation Models, Evaluation Methods, Goodness of Fit, Simulation
Peer reviewed Peer reviewed
Moustaki, Irini – Applied Psychological Measurement, 2000
Discusses a full-information maximum likelihood method for fitting a multidimensional latent variable model to a set of ordinal observed variables. Also discusses estimating the model, scoring persons on the latent dimensions, and goodness of fit. Applies the method to a data set of attitudes of 392 respondents toward technology. (SLD)
Descriptors: Adults, Attitudes, Equations (Mathematics), Estimation (Mathematics)
Peer reviewed Peer reviewed
Olsson, Ulf Henning; Foss, Tron; Troye, Sigurd V.; Howell, Roy D. – Structural Equation Modeling, 2000
Used simulation to demonstrate how the choice of estimation method affects indexes of fit and parameter bias for different sample sizes when nested models vary in terms of specification error and the data demonstrate different levels of kurtosis. Discusses results for maximum likelihood (ML), generalized least squares (GLS), and weighted least…
Descriptors: Estimation (Mathematics), Goodness of Fit, Least Squares Statistics, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Noel, Yvonnick; Dauvier, Bruno – Applied Psychological Measurement, 2007
An item response model is proposed for the analysis of continuous response formats in an item response theory (IRT) framework. With such formats, respondents are asked to report their response as a mark on a fixed-length graphical segment whose ends are labeled with extreme responses. An interpolation process is proposed as the response mechanism…
Descriptors: Simulation, Item Response Theory, Models, Responses
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2005
This article proposes a new approach to the statistical analysis of pairwisepresent covariance structure data. The estimator is based on maximizing the complete data likelihood function, and the associated test statistic and standard errors are corrected for misspecification using Satorra-Bentler corrections. A Monte Carlo study was conducted to…
Descriptors: Evaluation Methods, Maximum Likelihood Statistics, Statistical Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
MacCallum, Robert C.; Browne, Michael W.; Cai, Li – Psychological Methods, 2006
For comparing nested covariance structure models, the standard procedure is the likelihood ratio test of the difference in fit, where the null hypothesis is that the models fit identically in the population. A procedure for determining statistical power of this test is presented where effect size is based on a specified difference in overall fit…
Descriptors: Testing, Models, Statistical Analysis, Research Methodology