NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20250
Since 2022 (last 5 years)0
Since 2017 (last 10 years)0
Since 2007 (last 20 years)6
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal…1
What Works Clearinghouse Rating
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hourigan, Mairéad; Leavy, Aisling – Teaching Statistics: An International Journal for Teachers, 2016
As part of Japanese Lesson study research focusing on "comparing and describing likelihoods", fifth grade elementary students used real-world data in decision-making. Sporting statistics facilitated opportunities for informal inference, where data were used to make and justify predictions.
Descriptors: Foreign Countries, Elementary School Students, Grade 5, Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Peugh, James L. – Journal of Early Adolescence, 2014
Applied early adolescent researchers often sample students (Level 1) from within classrooms (Level 2) that are nested within schools (Level 3), resulting in data that requires multilevel modeling analysis to avoid Type 1 errors. Although several articles have been published to assist researchers with analyzing sample data nested at two levels, few…
Descriptors: Early Adolescents, Research, Hierarchical Linear Modeling, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2011
An extension of the latent Markov Rasch model is described for the analysis of binary longitudinal data with covariates when subjects are collected in clusters, such as students clustered in classes. For each subject, a latent process is used to represent the characteristic of interest (e.g., ability) conditional on the effect of the cluster to…
Descriptors: Markov Processes, Data Analysis, Maximum Likelihood Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Baraldi, Amanda N.; Enders, Craig K. – Journal of School Psychology, 2010
A great deal of recent methodological research has focused on two modern missing data analysis methods: maximum likelihood and multiple imputation. These approaches are advantageous to traditional techniques (e.g. deletion and mean imputation techniques) because they require less stringent assumptions and mitigate the pitfalls of traditional…
Descriptors: Maximum Likelihood Statistics, Data Analysis, Youth, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, In Heok – Career and Technical Education Research, 2012
Researchers in career and technical education often ignore more effective ways of reporting and treating missing data and instead implement traditional, but ineffective, missing data methods (Gemici, Rojewski, & Lee, 2012). The recent methodological, and even the non-methodological, literature has increasingly emphasized the importance of…
Descriptors: Vocational Education, Data Collection, Maximum Likelihood Statistics, Educational Research
Enders, Craig K. – Guilford Press, 2010
Walking readers step by step through complex concepts, this book translates missing data techniques into something that applied researchers and graduate students can understand and utilize in their own research. Enders explains the rationale and procedural details for maximum likelihood estimation, Bayesian estimation, multiple imputation, and…
Descriptors: Data Analysis, Error of Measurement, Research Problems, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Peugh, James L.; Enders, Craig K. – Review of Educational Research, 2004
Missing data analyses have received considerable recent attention in the methodological literature, and two "modern" methods, multiple imputation and maximum likelihood estimation, are recommended. The goals of this article are to (a) provide an overview of missing-data theory, maximum likelihood estimation, and multiple imputation; (b) conduct a…
Descriptors: Educational Research, Research Methodology, Data Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
te Marvelde, Janneke M.; Glas, Cees A. W.; Van Landeghem, Georges; Van Damme, Jan – Educational and Psychological Measurement, 2006
The application of multidimensional item response theory (IRT) models to longitudinal educational surveys where students are repeatedly measured is discussed and exemplified. A marginal maximum likelihood (MML) method to estimate the parameters of a multidimensional generalized partial credit model for repeated measures is presented. It is shown…
Descriptors: Foreign Countries, Regression (Statistics), School Effectiveness, Item Response Theory