Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 7 |
Descriptor
Source
| Structural Equation Modeling:… | 2 |
| Grantee Submission | 1 |
| International Journal of… | 1 |
| International Journal of… | 1 |
| Journal of Educational and… | 1 |
| Multivariate Behavioral… | 1 |
Author
| Savalei, Victoria | 2 |
| Bednarz, Alice | 1 |
| Bentler, Peter M. | 1 |
| Browne, Michael W. | 1 |
| Craig K. Enders | 1 |
| Gemici, Sinan | 1 |
| Gorard, Stephen | 1 |
| Lim, Patrick | 1 |
| Rhemtulla, Mijke | 1 |
| Schouteden, Martijn | 1 |
| Xi, Nuo | 1 |
| More ▼ | |
Publication Type
| Reports - Descriptive | 7 |
| Journal Articles | 6 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
| Longitudinal Surveys of… | 1 |
| National Longitudinal Study… | 1 |
What Works Clearinghouse Rating
Gorard, Stephen – International Journal of Social Research Methodology, 2020
Social science datasets usually have missing cases, and missing values. All such missing data has the potential to bias future research findings. However, many research reports ignore the issue of missing data, only consider some aspects of it, or do not report how it is handled. This paper rehearses the damage caused by missing data. The paper…
Descriptors: Data, Research Problems, Social Science Research, Statistical Analysis
Craig K. Enders – Grantee Submission, 2023
The year 2022 is the 20th anniversary of Joseph Schafer and John Graham's paper titled "Missing data: Our view of the state of the art," currently the most highly cited paper in the history of "Psychological Methods." Much has changed since 2002, as missing data methodologies have continually evolved and improved; the range of…
Descriptors: Data, Research, Theories, Regression (Statistics)
Xi, Nuo; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2014
A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Data, Computation
Savalei, Victoria; Rhemtulla, Mijke – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Fraction of missing information [lambda][subscript j] is a useful measure of the impact of missing data on the quality of estimation of a particular parameter. This measure can be computed for all parameters in the model, and it communicates the relative loss of efficiency in the estimation of a particular parameter due to missing data. It has…
Descriptors: Computation, Structural Equation Models, Maximum Likelihood Statistics, Data
de Rooij, Mark; Schouteden, Martijn – Multivariate Behavioral Research, 2012
Maximum likelihood estimation of mixed effect baseline category logit models for multinomial longitudinal data can be prohibitive due to the integral dimension of the random effects distribution. We propose to use multidimensional unfolding methodology to reduce the dimensionality of the problem. As a by-product, readily interpretable graphical…
Descriptors: Statistical Analysis, Longitudinal Studies, Data, Models
Gemici, Sinan; Bednarz, Alice; Lim, Patrick – International Journal of Training Research, 2012
Quantitative research in vocational education and training (VET) is routinely affected by missing or incomplete information. However, the handling of missing data in published VET research is often sub-optimal, leading to a real risk of generating results that can range from being slightly biased to being plain wrong. Given that the growing…
Descriptors: Vocational Education, Educational Research, Data, Statistical Analysis
Savalei, Victoria; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
A well-known ad-hoc approach to conducting structural equation modeling with missing data is to obtain a saturated maximum likelihood (ML) estimate of the population covariance matrix and then to use this estimate in the complete data ML fitting function to obtain parameter estimates. This 2-stage (TS) approach is appealing because it minimizes a…
Descriptors: Structural Equation Models, Data, Computation, Maximum Likelihood Statistics

Peer reviewed
Direct link
