NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rivadulla, Francisco – Journal of Chemical Education, 2019
The Maxwell distribution of speeds, f(v), is the starting point for the calculation of the transport coefficients in kinetic-molecular theory. Most physical chemistry textbooks follow a path to derive f(v) similar to that used by Maxwell, which makes it difficult for students to understand its relationship with the equilibrium state of the system,…
Descriptors: Molecular Structure, Theories, Science Instruction, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Kuntzleman, Thomas S.; Johnson, Ryan – Journal of Chemical Education, 2020
The so-called Diet Coke and Mentos experiment is initiated by dropping Mentos candies into a bottle of Diet Coke or other carbonated beverage. This causes the beverage to rapidly degas, causing foam to stream out of the bottle. Simple application of the gas laws leads to the straightforward prediction that ejection of greater foam volume is…
Descriptors: Chemistry, Food, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Gu, Jerry; Andreopoulos, Stavroula; Jenkinson, Jodie; Ng, Derek P. – Biochemistry and Molecular Biology Education, 2020
Enzyme kinetics is the study of enzymatic catalytic rates in biochemical reactions. This topic is commonly taught to life science students in introductory biochemistry courses during their undergraduate education. Unlike most other biochemistry topics, which focus on visual structures of biomolecules and their processes, enzyme kinetics is…
Descriptors: Biochemistry, Science Instruction, Undergraduate Students, Web Based Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Hitt, Austin Manning; Townsend, J. Scott – Science Activities: Classroom Projects and Curriculum Ideas, 2015
Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…
Descriptors: Science Instruction, Scientific Concepts, Misconceptions, Heat
Peer reviewed Peer reviewed
Direct linkDirect link
Huggins, Elisha – Physics Teacher, 2010
Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…
Descriptors: Kinetics, Science Instruction, Correlation, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Seimears, C. Matt – Science Activities: Classroom Projects and Curriculum Ideas, 2010
This effective technique has third- and fourth-grade students explore potential and kinetic energy and explain their discoveries. Students investigate what it takes to make a paint can roll forward and come right back, without seeing inside. Students experience science as an inquiry and develop their critical thinking skills. Students can also…
Descriptors: Kinetics, Critical Thinking, Thinking Skills, Grade 3
Peer reviewed Peer reviewed
Direct linkDirect link
Kapur, Manu; Voiklis, John; Kinzer, Charles K. – Computers & Education, 2008
This study reports the impact of high sensitivity to early exchange in 11th-grade, CSCL triads solving well- and ill-structured problems in Newtonian Kinematics. A mixed-method analysis of the evolution of participation inequity (PI) in group discussions suggested that participation levels tended to get locked-in relatively early on in the…
Descriptors: Problem Solving, Computer Mediated Communication, Educational Technology, Discussion Groups