NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Potratz, Jeffrey P. – Journal of Chemical Education, 2017
An interactive classroom demonstration that enhances students' knowledge of steady-state and Michaelis-Menten enzyme kinetics is described. The instructor uses a free version of professional-quality KinTek Explorer simulation software and student input to construct dynamic versions of three static hallmark images commonly used to introduce enzyme…
Descriptors: Biochemistry, Kinetics, Computer Simulation, Courseware
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kopasz, Katalin; Makra, Péter; Gingl, Zoltán – Acta Didactica Napocensia, 2013
Experiments, as we all know, are especially important in science education. However, their impact on improving thinking could be even greater when applied together with the methods of inquiry-based learning (IBL). In this paper we present our observations of a high-school laboratory class where students used computers to carry out and analyse real…
Descriptors: Science Education, Science Experiments, Active Learning, Inquiry
Peer reviewed Peer reviewed
Moore, John W., Ed. – Journal of Chemical Education, 1984
Describes: Apple stereochemistry program; CNDO/2-INDO mini-computer calculations; direct linear plot procedure for enzyme kinetics calculations; construction of nonlinear Scatchard plots; simulation of mass spectral envelopes of polyisotopic elements; graphics with a dot-matrix printer; MINC computer in the physical chemistry laboratory; hallway…
Descriptors: Chemistry, College Science, Computer Graphics, Computer Oriented Programs
Peer reviewed Peer reviewed
Fernandez, J. Maria Vega; And Others – American Journal of Physics, 1981
A method is presented for teaching some topics of kinematics. It involves the use of electronic equipment, which allows active student participation, the systematic analysis and solution of problems, and the use of a quick feedback loop for training. (Author/SK)
Descriptors: College Science, Computer Graphics, Computer Oriented Programs, Computers
Peer reviewed Peer reviewed
Dobosh, Paul A. – Journal of Chemical Education, 1981
Describes an interactive BASIC program with 192 statements and 18 comments for use with a Tektronix 4051 computer. (SK)
Descriptors: Chemical Reactions, Chemistry, College Science, Computer Graphics
Peer reviewed Peer reviewed
Brosnan, Tim – School Science Review, 1989
States that quantitative modelling allows teachers to concentrate more on qualitative understanding. Suggests the main benefits as (1) repetitive calculations are reduced allowing greater attention to be focused on underlying models; (2) more "what if" models can be tested; and (3) a wider variety of data can be used to test models. (MVL)
Descriptors: Chemical Equilibrium, Chemistry, College Science, Computer Graphics
Peer reviewed Peer reviewed
Gelpi, Josep Lluis; Domenech, Carlos – Biochemical Education, 1988
Describes a program which allows students to identify and characterize several kinetic inhibitory mechanisms. Uses the generic model of reversible inhibition of a monosubstrate enzyme but can be easily modified to run other models such as bisubstrate enzymes. Uses MS-DOS BASIC. (MVL)
Descriptors: Biochemistry, Chemical Reactions, College Science, Computer Graphics
Peer reviewed Peer reviewed
Moore, John W., Ed. – Journal of Chemical Education, 1983
Describes 10 computer programs (available from authors), including graphics display of molecular structure, cyclohexane stereo chemistry, calculation of thermodynamics properties of chemical reactions, and others. Also described graphical display of chemical interactive programs using a programmable calculator and discusses distribution of…
Descriptors: Calculators, Chemical Bonding, Chemical Reactions, Chemistry
Peer reviewed Peer reviewed
Skattes, J. M. – Chemical Engineering Education, 1986
Describes the use of a microcomputer program which was written to analyze batch reactor data by the integral method. Discusses how the program is structured and used by students in engineering kinetics. An example problem is included along with the computer's solution. (TW)
Descriptors: Chemical Engineering, Chemistry, College Science, Computer Assisted Instruction