NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20250
Since 2022 (last 5 years)0
Since 2017 (last 10 years)0
Since 2007 (last 20 years)2
Publication Type
Journal Articles2
Reports - Descriptive2
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ullman, Tomer D.; Goodman, Noah D.; Tenenbaum, Joshua B. – Cognitive Development, 2012
We present an algorithmic model for the development of children's intuitive theories within a hierarchical Bayesian framework, where theories are described as sets of logical laws generated by a probabilistic context-free grammar. We contrast our approach with connectionist and other emergentist approaches to modeling cognitive development. While…
Descriptors: Children, Learning, Child Development, Intuition
Peer reviewed Peer reviewed
Direct linkDirect link
Gopnik, Alison; Wellman, Henry M. – Psychological Bulletin, 2012
We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…
Descriptors: Causal Models, Theory of Mind, Probability, Cognitive Development