Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 4 |
| Since 2007 (last 20 years) | 4 |
Descriptor
| Algorithms | 5 |
| Bayesian Statistics | 5 |
| Models | 3 |
| Evaluation Methods | 2 |
| Generalization | 2 |
| Simulation | 2 |
| Accuracy | 1 |
| Artificial Intelligence | 1 |
| Computation | 1 |
| Computer Uses in Education | 1 |
| Correlation | 1 |
| More ▼ | |
Author
| Arminger, Gerhard | 1 |
| Blomstedt, Paul | 1 |
| Cunningham, John P. | 1 |
| Dawn Zimmaro | 1 |
| Denis Shchepakin | 1 |
| Edgar C. Merkle | 1 |
| Gelman, Andrew | 1 |
| Jean-Paul Fox | 1 |
| Jylänki, Pasi | 1 |
| Mauricio Garnier-Villarreal | 1 |
| Muthen, Bengt O. | 1 |
| More ▼ | |
Publication Type
| Reports - Descriptive | 5 |
| Journal Articles | 4 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Denis Shchepakin; Sreecharan Sankaranarayanan; Dawn Zimmaro – International Educational Data Mining Society, 2024
Bayesian Knowledge Tracing (BKT) is a probabilistic model of a learner's state of mastery for a knowledge component. The learner's state is a "hidden" binary variable updated based on the correctness of the learner's responses to questions corresponding to that knowledge component. The parameters used for this update are inferred/learned…
Descriptors: Algorithms, Bayesian Statistics, Probability, Artificial Intelligence
Edgar C. Merkle; Oludare Ariyo; Sonja D. Winter; Mauricio Garnier-Villarreal – Grantee Submission, 2023
We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on…
Descriptors: Models, Bayesian Statistics, Correlation, Evaluation Methods
Vehtari, Aki; Gelman, Andrew; Sivula, Tuomas; Jylänki, Pasi; Tran, Dustin; Sahai, Swupnil; Blomstedt, Paul; Cunningham, John P.; Schiminovich, David; Robert, Christian P. – Grantee Submission, 2020
A common divide-and-conquer approach for Bayesian computation with big data is to partition the data, perform local inference for each piece separately, and combine the results to obtain a global posterior approximation. While being conceptually and computationally appealing, this method involves the problematic need to also split the prior for…
Descriptors: Bayesian Statistics, Algorithms, Computation, Generalization
Peer reviewedArminger, Gerhard; Muthen, Bengt O. – Psychometrika, 1998
Nonlinear latent variable models are specified that include quadratic forms and interactions of latent regressor variable as special cases. To estimate the parameters, the models are put in a Bayesian framework with conjugate priors for the parameters. The proposed estimation methods are illustrated by two simulation studies. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Mathematical Models

Direct link
