NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sulis, Isabella; Toland, Michael D. – Journal of Early Adolescence, 2017
Item response theory (IRT) models are the main psychometric approach for the development, evaluation, and refinement of multi-item instruments and scaling of latent traits, whereas multilevel models are the primary statistical method when considering the dependence between person responses when primary units (e.g., students) are nested within…
Descriptors: Hierarchical Linear Modeling, Item Response Theory, Psychometrics, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Varriale, Roberta; Vermunt, Jeroen K. – Multivariate Behavioral Research, 2012
Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…
Descriptors: Factor Analysis, Models, Statistical Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2011
An extension of the latent Markov Rasch model is described for the analysis of binary longitudinal data with covariates when subjects are collected in clusters, such as students clustered in classes. For each subject, a latent process is used to represent the characteristic of interest (e.g., ability) conditional on the effect of the cluster to…
Descriptors: Markov Processes, Data Analysis, Maximum Likelihood Statistics, Computation