NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Maruszewski, Richard – College Mathematics Journal, 2009
In 1225 Fibonacci visited the court of the Holy Roman Emperor, Frederick II. Because Frederick was an important patron of learning, this visit was important to Fibonacci. During the audience, Frederick's court mathematician posed three problems to test Fibonacci. The third was to find the real solution to the equation: x[superscript 3] +…
Descriptors: Computation, Mathematics Instruction, College Mathematics, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Kadosh, Roi Cohen; Tzelgov, Joseph; Henik, Avishai – Cognition, 2008
Are small and large numbers represented similarly or differently on the mental number line? The size effect was used to argue that numbers are represented differently. However, recently it has been argued that the size effect is due to the comparison task and is not derived from the mental number line per se. Namely, it is due to the way that the…
Descriptors: Measurement Techniques, Numbers, Computation, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Rips, Lance J.; Asmuth, Jennifer; Bloomfield, Amber – Cognition, 2006
According to one theory about how children learn the concept of natural numbers, they first determine that "one", "two", and "three" denote the size of sets containing the relevant number of items. They then make the following inductive inference (the Bootstrap): The next number word in the counting series denotes the size of the sets you get by…
Descriptors: Numbers, Number Concepts, Inferences, Computation
Peer reviewed Peer reviewed
Johnson, David C. – Arithmetic Teacher, 1979
An appeal is made for a more formal treatment of the topics of estimation and reasonableness of answers in the school mathematics curriculum. (MP)
Descriptors: Computation, Elementary Education, Elementary School Mathematics, Mathematical Applications
Peer reviewed Peer reviewed
Thwaites, G. N. – Mathematics in School, 1989
Discusses a counting system and number operations. Suggests six distinct areas in a "number" subject: one-to-one correspondences; simple counting process; complicated counting process; addition and multiplication; algorithms for the operations; and the decimal system. (YP)
Descriptors: Arithmetic, Computation, Elementary School Mathematics, Mathematical Concepts
Peer reviewed Peer reviewed
Demana, Franklin; Osborne, Alan – Arithmetic Teacher, 1988
Argues that the type of calculator that is used in mathematics instruction is very important. Suggests that four-function calculators fail to give correct values of mathematical expressions far more often than do scientific calculators. (PK)
Descriptors: Algorithms, Calculators, Computation, Educational Technology