Publication Date
| In 2026 | 0 |
| Since 2025 | 4 |
| Since 2022 (last 5 years) | 65 |
| Since 2017 (last 10 years) | 120 |
| Since 2007 (last 20 years) | 121 |
Descriptor
Source
Author
| Saqr, Mohammed | 4 |
| Axelsen, Megan | 2 |
| Basson, Marita | 2 |
| Brown, Alice | 2 |
| Chinsook, Kittipong | 2 |
| Drachsler, Hendrik | 2 |
| Galligan, Linda | 2 |
| Gaševic, Dragan | 2 |
| Huang, Nen-Fu | 2 |
| Hwang, Gwo-Jen | 2 |
| Jantakoon, Thada | 2 |
| More ▼ | |
Publication Type
| Journal Articles | 121 |
| Reports - Research | 105 |
| Reports - Descriptive | 8 |
| Information Analyses | 5 |
| Reports - Evaluative | 5 |
| Speeches/Meeting Papers | 1 |
| Tests/Questionnaires | 1 |
Education Level
Audience
Location
| China | 10 |
| Taiwan | 6 |
| Canada | 4 |
| Japan | 3 |
| Spain | 3 |
| Australia | 2 |
| Finland | 2 |
| Netherlands | 2 |
| Turkey | 2 |
| Australasia | 1 |
| China (Beijing) | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Motivated Strategies for… | 2 |
| ACT Assessment | 1 |
| International English… | 1 |
| National Assessment of… | 1 |
What Works Clearinghouse Rating
Nina Bergdahl; Melissa Bond; Jeanette Sjöberg; Mark Dougherty; Emily Oxley – International Journal of Educational Technology in Higher Education, 2024
Educational outcomes are heavily reliant on student engagement, yet this concept is complex and subject to diverse interpretations. The intricacy of the issue arises from the broad spectrum of interpretations, each contributing to the understanding of student engagement as both complex and multifaceted. Given the emergence and increasing use of…
Descriptors: Learner Engagement, College Students, Student Behavior, Educational Technology
Wannapon Suraworachet; Qi Zhou; Mutlu Cukurova – Journal of Computer Assisted Learning, 2025
Background: Many researchers work on the design and development of multimodal collaboration support systems with AI, yet very few of these systems are mature enough to provide actionable feedback to students in real-world settings. Therefore, a notable gap exists in the literature regarding students' perceptions of such systems and the feedback…
Descriptors: Graduate Students, Student Attitudes, Artificial Intelligence, Cooperative Learning
Önder, Asuman; Akçapinar, Gökhan – Education and Information Technologies, 2023
The effective use of self-regulation strategies has been considered significant in online learning environments. It is known that learners must be supported in this context. Academic help-seeking (AHS), as one of the main self-regulated learning strategies, is associated with academic success. However, learners may avoid seeking help for…
Descriptors: Students, Help Seeking, Student Behavior, Learning Analytics
Xia, Xiaona; Qi, Wanxue – International Journal of Educational Technology in Higher Education, 2023
The temporal sequence of learning behavior is multidimensional and continuous in MOOCs. On the one hand, it supports personalized learning methods, achieves flexible time and space. On the other hand, it also makes MOOCs produce a large number of dropouts and incomplete learning behaviors. Dropout prediction and decision feedback have become an…
Descriptors: MOOCs, Dropouts, Prediction, Decision Making
Priya Harindranathan; James Folkestad; Jemshid K. – Journal of Educational Technology, 2025
Due to the use of online learning platforms and learning management systems, students are now working unsupervised on quiz-taking platforms. These unsupervised online forms of assessment are replacing traditional supervised quizzes in conventional classrooms. It is unclear whether the quiz-taking behaviors of students in these settings align with…
Descriptors: Undergraduate Students, Microbiology, Science Education, Computer Assisted Testing
Khajonmote, Withamon; Chinsook, Kittipong; Klintawon, Sununta; Sakulthai, Chaiyan; Leamsakul, Wicha; Jansawang, Natchanok; Jantakoon, Thada – Journal of Education and Learning, 2022
The system architecture of big data in massive open online courses (BD-MOOCs System Architecture) is composed of six components. The first component was comprised of big data tools and technologies such as Hadoop, YARN, HDFS, Spark, Hive, Sqoop, and Flume. The second component was educational data science, which is composed of the following four…
Descriptors: MOOCs, Data Collection, Student Behavior, Computer Software
Esteban Villalobos; Isabel Hilliger; Carlos Gonzalez; Sergio Celis; Mar Pérez-Sanagustín; Julien Broisin – Journal of Learning Analytics, 2024
Researchers in learning analytics have created indicators with learners' trace data as a proxy for studying learner behaviour in a college course. Student Approaches to Learning (SAL) is one of the theories used to explain these behaviours, distinguishing between deep, surface, and organized study. In Latin America, researchers have demonstrated…
Descriptors: Learning Analytics, Academic Achievement, Role Theory, Learning Processes
Elissavet Papageorgiou; Jacqueline Wong; Mohammad Khalil; Annoesjka J. Cabo – Journal of Learning Analytics, 2025
Behavioural engagement as a predictor of academic success hinges on the interplay between effort and time. Exploring the longitudinal development of engagement is vital for understanding adaptations in learning behaviour and informing educational interventions. However, person-oriented longitudinal studies on student engagement are scarce.…
Descriptors: Learner Engagement, Student Behavior, Electronic Learning, Web Based Instruction
Yang, Christopher C. Y.; Ogata, Hiroaki – Education and Information Technologies, 2023
The application of student interaction data is a promising field for blended learning (BL), which combines conventional face-to-face and online learning activities. However, the application of online learning technologies in BL settings is particularly challenging for students with lower self-regulatory abilities. In this study, a personalized…
Descriptors: Individualized Instruction, Learning Analytics, Intervention, Academic Achievement
Brown, Alice; Lawrence, Jill; Basson, Marita; Axelsen, Megan; Redmond, Petrea; Turner, Joanna; Maloney, Suzanne; Galligan, Linda – Active Learning in Higher Education, 2023
Combining nudge theory with learning analytics, 'nudge analytics', is a relatively recent phenomenon in the educational context. Used, for example, to address such issues as concerns with student (dis)engagement, nudging students to take certain action or to change a behaviour towards active learning, can make a difference. However, knowing who to…
Descriptors: Online Courses, Learner Engagement, Learning Analytics, Intervention
Biedermann, Daniel; Ciordas-Hertel, George-Petru; Winter, Marc; Mordel, Julia; Drachsler, Hendrik – Journal of Learning Analytics, 2023
Learners use digital media during learning for a variety of reasons. Sometimes media use can be considered "on-task," e.g., to perform research or to collaborate with peers. In other cases, media use is "off-task," meaning that learners use content unrelated to their current learning task. Given the well-known problems with…
Descriptors: Learning Processes, Learning Analytics, Information Technology, Behavior Patterns
Hu, Yung-Hsiang – Education and Information Technologies, 2022
The research presents precision education that aims to regulate students' behaviors through the learning analytics dashboard (LAD) in the AI-supported smart learning environment (SLE). The LAD basically tracks and visualizes traces of learning actions to make students aware of their learning behaviors and reflect these against the agreed goals.…
Descriptors: Precision Teaching, Artificial Intelligence, Educational Environment, Student Behavior
Rotelli, Daniela; Monreale, Anna – Journal of Learning Analytics, 2023
The increased adoption of online learning environments has resulted in the availability of vast amounts of educational log data, which raises questions that could be answered by a thorough and accurate examination of students' online learning behaviours. Event logs describe something that occurred on a platform and provide multiple dimensions that…
Descriptors: Learning Analytics, Learning Management Systems, Time on Task, Student Behavior
Abdullahi Yusuf; Norah Md Noor; Shamsudeen Bello – Education and Information Technologies, 2024
Studies examining students' learning behavior predominantly employed rich video data as their main source of information due to the limited knowledge of computer vision and deep learning algorithms. However, one of the challenges faced during such observation is the strenuous task of coding large amounts of video data through repeated viewings. In…
Descriptors: Learning Analytics, Student Behavior, Video Technology, Classification
Elmoazen, Ramy; Saqr, Mohammed; Khalil, Mohammad; Wasson, Barbara – Smart Learning Environments, 2023
Remote learning has advanced from the theoretical to the practical sciences with the advent of virtual labs. Although virtual labs allow students to conduct their experiments remotely, it is a challenge to evaluate student progress and collaboration using learning analytics. So far, a study that systematically synthesizes the status of research on…
Descriptors: Learning Analytics, Higher Education, Medical Education, Student Behavior

Peer reviewed
Direct link
