NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Muhammad Aslam – Measurement: Interdisciplinary Research and Perspectives, 2025
The existing algorithm employing the log-normal distribution lacks applicability in generating imprecise data. This paper addresses this limitation by first introducing the log-normal distribution as a means to handle imprecise data. Subsequently, we leverage the neutrosophic log-normal distribution to devise an algorithm specifically tailored for…
Descriptors: Statistical Distributions, Algorithms, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Zhou, Todd; Jiao, Hong – Educational and Psychological Measurement, 2023
Cheating detection in large-scale assessment received considerable attention in the extant literature. However, none of the previous studies in this line of research investigated the stacking ensemble machine learning algorithm for cheating detection. Furthermore, no study addressed the issue of class imbalance using resampling. This study…
Descriptors: Cheating, Measurement, Artificial Intelligence, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Paganin, Sally; Paciorek, Christopher J.; Wehrhahn, Claudia; Rodríguez, Abel; Rabe-Hesketh, Sophia; de Valpine, Perry – Journal of Educational and Behavioral Statistics, 2023
Item response theory (IRT) models typically rely on a normality assumption for subject-specific latent traits, which is often unrealistic in practice. Semiparametric extensions based on Dirichlet process mixtures (DPMs) offer a more flexible representation of the unknown distribution of the latent trait. However, the use of such models in the IRT…
Descriptors: Bayesian Statistics, Item Response Theory, Guidance, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Rebeckah K. Fussell; Emily M. Stump; N. G. Holmes – Physical Review Physics Education Research, 2024
Physics education researchers are interested in using the tools of machine learning and natural language processing to make quantitative claims from natural language and text data, such as open-ended responses to survey questions. The aspiration is that this form of machine coding may be more efficient and consistent than human coding, allowing…
Descriptors: Physics, Educational Researchers, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rodriguez, AE; Rosen, John – Research in Higher Education Journal, 2023
The various empirical models built for enrollment management, operations, and program evaluation purposes may have lost their predictive power as a result of the recent collective impact of COVID restrictions, widespread social upheaval, and the shift in educational preferences. This statistical artifact is known as model drifting, data-shift,…
Descriptors: Models, Enrollment Management, School Holding Power, Data
Matthew Jannetti; Amy Carroll-Scott; Erikka Gilliam; Irene Headen; Maggie Beverly; Félice Lê-Scherban – Field Methods, 2023
Place-based initiatives often use resident surveys to inform and evaluate interventions. Sampling based on well-defined sampling frames is important but challenging for initiatives that target subpopulations. Databases that enumerate total population counts can produce overinclusive sampling frames, resulting in costly outreach to ineligible…
Descriptors: Sampling, Probability, Definitions, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
Direct linkDirect link
Vištica, Marija; Grubišic, Ani; Žitko, Branko – International Journal of Information and Learning Technology, 2016
Purpose: In order to initialize a student model in intelligent tutoring systems, some form of initial knowledge test should be given to a student. Since the authors cannot include all domain knowledge in that initial test, a domain knowledge subset should be selected. The paper aims to discuss this issue. Design/methodology/approach: In order to…
Descriptors: Graphs, Intelligent Tutoring Systems, Sampling, Knowledge Management
Peer reviewed Peer reviewed
Dolker, Michael; And Others – Psychometrika, 1982
Efron's Monte Carlo bootstrap algorithm is shown to cause degeneracies in Pearson's r for sufficiently small samples. Two ways of preventing this problem when programing the bootstrap of r are considered. (Author)
Descriptors: Algorithms, Computer Programs, Correlation, Sampling
Peer reviewed Peer reviewed
Berry, Kenneth J.; Mielke, Paul W., Jr. – Educational and Psychological Measurement, 1986
An algorithm and associated FORTRAN-77 computer subroutine are described for computing Goodman and Kruskal's tau-b statistic along with the associated nonasymptotic probability value under the null hypothesis tau=O. (Author)
Descriptors: Algorithms, Computer Software, Programing Languages, Sampling
Peer reviewed Peer reviewed
Wirt, Edgar – Journal of Experimental Education, 1987
In negotiating to obtain a sample of records from a computer file, it is important to be able to present a simple program that will produce a representative and valid sample. This article describes two procedures: (1) an interval selection method; and (2) a random numbers file. (JAZ)
Descriptors: Algorithms, Business, Computers, Databases
Peer reviewed Peer reviewed
Seltzer, Michael H.; And Others – Journal of Educational and Behavioral Statistics, 1996
The Gibbs sampling algorithms presented by M. H. Seltzer (1993) are fully generalized to a broad range of settings in which vectors of random regression parameters in the hierarchical model are assumed multivariate normally or multivariate "t" distributed across groups. The use of a fully Bayesian approach is discussed. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Multivariate Analysis
Peer reviewed Peer reviewed
Berger, Martijn P. F. – Journal of Educational Statistics, 1994
Problems in selection of optimal designs in item-response theory (IRT) models are resolved through a sequential design procedure that is a modification of the D-optimality procedure proposed by Wynn (1970). This algorithm leads to consistent estimates, and the errors in selecting the abilities generally do not greatly affect optimality. (SLD)
Descriptors: Ability, Algorithms, Estimation (Mathematics), Item Response Theory
Cardinet, Jean; Allal, Linda – New Directions for Testing and Measurement, 1983
A general framework for conducting generalizability analyses is presented. Generalizability theory is extended to situations in which the objects of measurement are not persons but other factors, such as instructional objectives, stages of learning, and treatments. (Author/PN)
Descriptors: Algorithms, Analysis of Variance, Estimation (Mathematics), Mathematical Formulas
Previous Page | Next Page »
Pages: 1  |  2