NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Grade 81
Audience
Researchers1
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 27 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Teague R. Henry; Zachary F. Fisher; Kenneth A. Bollen – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, noniterative estimator for latent variable models. Associated with this estimator are equation-specific tests of model misspecification. One issue with equation-specific tests is that they lack specificity, in that they indicate…
Descriptors: Bayesian Statistics, Least Squares Statistics, Structural Equation Models, Equations (Mathematics)
Ziqian Xu – Grantee Submission, 2022
With the prevalence of missing data in social science research, it is necessary to use methods for handling missing data. One framework in which data with missing values can still be used for parameter estimation is the Bayesian framework. In this tutorial, different missing data mechanisms including Missing Completely at Random, Missing at…
Descriptors: Research Problems, Bayesian Statistics, Structural Equation Models, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Daniel Y.; Harring, Jeffrey R. – Journal of Educational and Behavioral Statistics, 2023
A Monte Carlo simulation was performed to compare methods for handling missing data in growth mixture models. The methods considered in the current study were (a) a fully Bayesian approach using a Gibbs sampler, (b) full information maximum likelihood using the expectation-maximization algorithm, (c) multiple imputation, (d) a two-stage multiple…
Descriptors: Monte Carlo Methods, Research Problems, Statistical Inference, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Efthimiou, Orestis; White, Ian R. – Research Synthesis Methods, 2020
Standard models for network meta-analysis simultaneously estimate multiple relative treatment effects. In practice, after estimation, these multiple estimates usually pass through a formal or informal selection procedure, eg, when researchers draw conclusions about the effects of the best performing treatment in the network. In this paper, we…
Descriptors: Models, Meta Analysis, Network Analysis, Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Uglanova, Irina – Practical Assessment, Research & Evaluation, 2021
There is increased use of Bayesian networks (BN) in educational assessment. In psychometrics, BN serves as a measurement model with high flexibility, suitable to model educational assessment data with a complex structure. BN is a novel psychometric approach and not all aspects of its application are well-known. The article aims to provide the…
Descriptors: Bayesian Statistics, Educational Assessment, Psychometrics, Criticism
Peer reviewed Peer reviewed
Direct linkDirect link
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Lifeng; Chu, Haitao – Research Synthesis Methods, 2018
In medical sciences, a disease condition is typically associated with multiple risk and protective factors. Although many studies report results of multiple factors, nearly all meta-analyses separately synthesize the association between each factor and the disease condition of interest. The collected studies usually report different subsets of…
Descriptors: Bayesian Statistics, Multivariate Analysis, Meta Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Lortie-Forgues, Hugues; Inglis, Matthew – Educational Researcher, 2019
In this response, we first show that Simpson's proposed analysis answers a different and less interesting question than ours. We then justify the choice of prior for our Bayes factors calculations, but we also demonstrate that the substantive conclusions of our article are not substantially affected by varying this choice.
Descriptors: Randomized Controlled Trials, Bayesian Statistics, Educational Research, Program Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Simpson, Adrian – Educational Researcher, 2019
A recent paper uses Bayes factors to argue a large minority of rigorous, large-scale education RCTs are "uninformative." The definition of "uninformative" depends on the authors' hypothesis choices for calculating Bayes factors. These arguably overadjust for effect size inflation and involve a fixed prior distribution,…
Descriptors: Randomized Controlled Trials, Bayesian Statistics, Educational Research, Program Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison J. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian item response theory (IRT) modeling stages include (a) specifying the IRT likelihood model, (b) specifying the parameter prior distributions, (c) obtaining the posterior distribution, and (d) making appropriate inferences. The latter stage, and the focus of this research, includes model criticism. Choice of priors with the posterior…
Descriptors: Bayesian Statistics, Item Response Theory, Statistical Inference, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Trafimow, David – Educational and Psychological Measurement, 2017
There has been much controversy over the null hypothesis significance testing procedure, with much of the criticism centered on the problem of inverse inference. Specifically, p gives the probability of the finding (or one more extreme) given the null hypothesis, whereas the null hypothesis significance testing procedure involves drawing a…
Descriptors: Statistical Inference, Hypothesis Testing, Probability, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Friede, Tim; Röver, Christian; Wandel, Simon; Neuenschwander, Beat – Research Synthesis Methods, 2017
Meta-analyses in orphan diseases and small populations generally face particular problems, including small numbers of studies, small study sizes and heterogeneity of results. However, the heterogeneity is difficult to estimate if only very few studies are included. Motivated by a systematic review in immunosuppression following liver…
Descriptors: Meta Analysis, Diseases, Medical Research, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
García-Pérez, Miguel A. – Educational and Psychological Measurement, 2017
Null hypothesis significance testing (NHST) has been the subject of debate for decades and alternative approaches to data analysis have been proposed. This article addresses this debate from the perspective of scientific inquiry and inference. Inference is an inverse problem and application of statistical methods cannot reveal whether effects…
Descriptors: Hypothesis Testing, Statistical Inference, Effect Size, Bayesian Statistics
Dorie, Vincent; Harada, Masataka; Carnegie, Nicole Bohme; Hill, Jennifer – Grantee Submission, 2016
When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis…
Descriptors: Bayesian Statistics, Mathematical Models, Causal Models, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Previous Page | Next Page »
Pages: 1  |  2