NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Location
Netherlands1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Monteiro, Kátia; Crossley, Scott; Botarleanu, Robert-Mihai; Dascalu, Mihai – Language Testing, 2023
Lexical frequency benchmarks have been extensively used to investigate second language (L2) lexical sophistication, especially in language assessment studies. However, indices based on semantic co-occurrence, which may be a better representation of the experience language users have with lexical items, have not been sufficiently tested as…
Descriptors: Second Language Learning, Second Languages, Native Language, Semantics
Peer reviewed Peer reviewed
Direct linkDirect link
Unger, Layla; Yim, Hyungwook; Savic, Olivera; Dennis, Simon; Sloutsky, Vladimir M. – Developmental Science, 2023
Recent years have seen a flourishing of Natural Language Processing models that can mimic many aspects of human language fluency. These models harness a simple, decades-old idea: It is possible to learn a lot about word meanings just from exposure to language, because words similar in meaning are used in language in similar ways. The successes of…
Descriptors: Natural Language Processing, Language Usage, Vocabulary Development, Linguistic Input
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Hang; Frank, Michael C.; Kulkarni, Vivek; Fourtassi, Abdellah – Cognitive Science, 2022
The linguistic input children receive across early childhood plays a crucial role in shaping their knowledge about the world. To study this input, researchers have begun applying distributional semantic models to large corpora of child-directed speech, extracting various patterns of word use/co-occurrence. Previous work using these models has not…
Descriptors: Caregivers, Caregiver Child Relationship, Linguistic Input, Semantics
Peer reviewed Peer reviewed
Direct linkDirect link
Leydi Johana Chaparro-Moreno; Hugo Gonzalez Villasanti; Laura M. Justice; Jing Sun; Mary Beth Schmitt – Journal of Speech, Language, and Hearing Research, 2024
Purpose: This study examines the accuracy of Interaction Detection in Early Childhood Settings (IDEAS), a program that automatically transcribes audio files and estimates linguistic units relevant to speech-language therapy, including part-of-speech units that represent features of language complexity, such as adjectives and coordinating…
Descriptors: Speech Language Pathology, Allied Health Personnel, Speech Therapy, Children
Peer reviewed Peer reviewed
Direct linkDirect link
Li Nguyen; Oliver Mayeux; Zheng Yuan – International Journal of Multilingualism, 2024
Multilingualism presents both a challenge and an opportunity for Natural Language Processing, with code-switching representing a particularly interesting problem for computational models trained on monolingual datasets. In this paper, we explore how code-switched data affects the task of Machine Translation, a task which only recently has started…
Descriptors: Code Switching (Language), Vietnamese, English (Second Language), Second Language Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Mahowald, Kyle; Kachergis, George; Frank, Michael C. – First Language, 2020
Ambridge calls for exemplar-based accounts of language acquisition. Do modern neural networks such as transformers or word2vec -- which have been extremely successful in modern natural language processing (NLP) applications -- count? Although these models often have ample parametric complexity to store exemplars from their training data, they also…
Descriptors: Models, Language Processing, Computational Linguistics, Language Acquisition
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie N.; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
Learning to paraphrase supports both writing ability and reading comprehension, particularly for less skilled learners. As such, educational tools that integrate automated evaluations of paraphrases can be used to provide timely feedback to enhance learner paraphrasing skills more efficiently and effectively. Paraphrase identification is a popular…
Descriptors: Computational Linguistics, Feedback (Response), Classification, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Timpe-Laughlin, Veronika; Sydorenko, Tetyana; Daurio, Phoebe – Computer Assisted Language Learning, 2022
Often, second/foreign (L2) language learners receive little opportunity to interact orally in the target language. Interactive, conversation-based spoken dialog systems (SDSs) that use automated speech recognition and natural language processing have the potential to address this need by engaging learners in meaningful, goal-oriented speaking…
Descriptors: Second Language Learning, Second Language Instruction, Oral Language, Dialogs (Language)
Peer reviewed Peer reviewed
Direct linkDirect link
Grama, Ileana C.; Kerkhoff, Annemarie; Wijnen, Frank – Journal of Psycholinguistic Research, 2016
The ability to detect non-adjacent dependencies (i.e. between "a" and "b" in "aXb") in spoken input may support the acquisition of morpho-syntactic dependencies (e.g. "The princess 'is' kiss'ing' the frog"). Functional morphemes in morpho-syntactic dependencies are often marked by perceptual cues that render…
Descriptors: Role, Suprasegmentals, Intonation, Cues
Peer reviewed Peer reviewed
Direct linkDirect link
Kolodny, Oren; Lotem, Arnon; Edelman, Shimon – Cognitive Science, 2015
We introduce a set of biologically and computationally motivated design choices for modeling the learning of language, or of other types of sequential, hierarchically structured experience and behavior, and describe an implemented system that conforms to these choices and is capable of unsupervised learning from raw natural-language corpora. Given…
Descriptors: Grammar, Natural Language Processing, Computer Mediated Communication, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Phoebe M. S. – Applied Linguistics, 2012
With the ever increasing number of studies on formulaic language, we are beginning to learn more about the processing of formulaic language (e.g. Ellis et al. 2008; Siyanova et al. 2011), its use in speech (e.g. Aijmer 1996; Wood 2012) and writing (e.g. Hyland 2008a, 2008b) and its application in natural language processing (e.g. Tschichold 2000).…
Descriptors: Evidence, Language Research, Applied Linguistics, Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Amaral, Luiz; Meurers, Detmar; Ziai, Ramon – Computer Assisted Language Learning, 2011
Intelligent language tutoring systems (ILTS) typically analyze learner input to diagnose learner language properties and provide individualized feedback. Despite a long history of ILTS research, such systems are virtually absent from real-life foreign language teaching (FLT). Taking a step toward more closely linking ILTS research to real-life…
Descriptors: Feedback (Response), Second Language Learning, Intelligent Tutoring Systems, Information Management
Peer reviewed Peer reviewed
Direct linkDirect link
Morris, Bradley J. – Journal of Cognition and Development, 2008
Why is it that young children use connectives correctly in conversation, yet frequently err when asked to use the same connectives in formal reasoning? One possibility is that connective acquisition is item-based in which usage rules are induced from natural language input. This possibility was evaluated by examining the correspondence between the…
Descriptors: Language Patterns, Linguistic Input, Natural Language Processing, Speech Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Amaral, Luiz A.; Meurers, W. Detmar – CALICO Journal, 2009
Error diagnosis in ICALL typically analyzes learner input in an attempt to abstract and identify indicators of the learner's (mis)conceptions of linguistic properties. For written input, this process usually starts with the identification of tokens that will serve as the atomic building blocks of the analysis. In this paper, we discuss the…
Descriptors: Grammar, Computer Assisted Instruction, Identification, Error Analysis (Language)
Peer reviewed Peer reviewed
Direct linkDirect link
Hudson Kam, Carla L.; Newport, Elissa L. – Cognitive Psychology, 2009
When natural language input contains grammatical forms that are used probabilistically and inconsistently, learners will sometimes reproduce the inconsistencies; but sometimes they will instead regularize the use of these forms, introducing consistency in the language that was not present in the input. In this paper we ask what produces such…
Descriptors: Form Classes (Languages), Artificial Languages, Adult Learning, Linguistic Input
Previous Page | Next Page »
Pages: 1  |  2