Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 3 |
| Since 2007 (last 20 years) | 19 |
Descriptor
| Bayesian Statistics | 21 |
| Learning | 21 |
| Models | 11 |
| Classification | 5 |
| Experiments | 5 |
| Logical Thinking | 4 |
| Children | 3 |
| Cognitive Development | 3 |
| Cognitive Processes | 3 |
| Foreign Countries | 3 |
| Item Response Theory | 3 |
| More ▼ | |
Source
Author
Publication Type
| Journal Articles | 21 |
| Reports - Research | 13 |
| Reports - Evaluative | 7 |
| Reports - Descriptive | 1 |
Education Level
| Higher Education | 4 |
| Adult Education | 1 |
| Postsecondary Education | 1 |
| Preschool Education | 1 |
Audience
Location
| Australia | 2 |
| Belgium | 1 |
| Louisiana | 1 |
| Massachusetts | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lozano, José H.; Revuelta, Javier – Applied Measurement in Education, 2021
The present study proposes a Bayesian approach for estimating and testing the operation-specific learning model, a variant of the linear logistic test model that allows for the measurement of the learning that occurs during a test as a result of the repeated use of the operations involved in the items. The advantages of using a Bayesian framework…
Descriptors: Bayesian Statistics, Computation, Learning, Testing
Frermann, Lea; Lapata, Mirella – Cognitive Science, 2016
Models of category learning have been extensively studied in cognitive science and primarily tested on perceptual abstractions or artificial stimuli. In this paper, we focus on categories acquired from natural language stimuli, that is, words (e.g., "chair" is a member of the furniture category). We present a Bayesian model that, unlike…
Descriptors: Classification, Bayesian Statistics, Models, Cognitive Science
De Bondt, Niki; Van Petegem, Peter – High Ability Studies, 2017
The aim of this study is to investigate interrelationships between overexcitability and learning patterns from the perspective of personality development according to Dabrowski's theory of positive disintegration. To this end, Bayesian structural equation modeling (BSEM) is applied which allows for the simultaneous inclusion in the measurement…
Descriptors: Psychological Patterns, Structural Equation Models, Bayesian Statistics, College Students
Gagliardi, Annie; Feldman, Naomi H.; Lidz, Jeffrey – Cognitive Science, 2017
Children acquiring languages with noun classes (grammatical gender) have ample statistical information available that characterizes the distribution of nouns into these classes, but their use of this information to classify novel nouns differs from the predictions made by an optimal Bayesian classifier. We use rational analysis to investigate the…
Descriptors: Children, Statistics, Learning, Bayesian Statistics
Anglim, Jeromy; Wynton, Sarah K. A. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Learning, Statistical Analysis
Zhang, Zhidong – International Education Studies, 2016
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
Descriptors: Alternative Assessment, Multiplication, Matrices, Learning
Endress, Ansgar D. – Cognition, 2013
In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to…
Descriptors: Learning, Bayesian Statistics, Logical Thinking, Psychology
Griffiths, Thomas L.; Lewandowsky, Stephan; Kalish, Michael L. – Cognitive Science, 2013
Information changes as it is passed from person to person, with this process of cultural transmission allowing the minds of individuals to shape the information that they transmit. We present mathematical models of cultural transmission which predict that the amount of information passed from person to person should affect the rate at which that…
Descriptors: Culture, Information Dissemination, Mathematical Models, Prediction
Ullman, Tomer D.; Goodman, Noah D.; Tenenbaum, Joshua B. – Cognitive Development, 2012
We present an algorithmic model for the development of children's intuitive theories within a hierarchical Bayesian framework, where theories are described as sets of logical laws generated by a probabilistic context-free grammar. We contrast our approach with connectionist and other emergentist approaches to modeling cognitive development. While…
Descriptors: Children, Learning, Child Development, Intuition
Scheibehenne, Benjamin; Rieskamp, Jorg; Wagenmakers, Eric-Jan – Psychological Review, 2013
Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox…
Descriptors: Cognitive Processes, Behavior, Models, Bayesian Statistics
Collins, Anne G. E.; Frank, Michael J. – Psychological Review, 2013
Learning and executive functions such as task-switching share common neural substrates, notably prefrontal cortex and basal ganglia. Understanding how they interact requires studying how cognitive control facilitates learning but also how learning provides the (potentially hidden) structure, such as abstract rules or task-sets, needed for…
Descriptors: Learning, Executive Function, Models, Bayesian Statistics
Luhmann, Christian C.; Ahn, Woo-kyoung – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2011
In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to…
Descriptors: Undergraduate Students, Causal Models, Learning, Influences
Goodman, Noah D.; Ullman, Tomer D.; Tenenbaum, Joshua B. – Psychological Review, 2011
The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be…
Descriptors: Causal Models, Logical Thinking, Cognitive Development, Bayesian Statistics
Austerweil, Joseph L.; Griffiths, Thomas L. – Cognitive Psychology, 2011
Most psychological theories treat the features of objects as being fixed and immediately available to observers. However, novel objects have an infinite array of properties that could potentially be encoded as features, raising the question of how people learn which features to use in representing those objects. We focus on the effects of…
Descriptors: Visual Stimuli, Novelty (Stimulus Dimension), Bayesian Statistics, Learning
Sanborn, Adam N.; Griffiths, Thomas L.; Navarro, Daniel J. – Psychological Review, 2010
Rational models of cognition typically consider the abstract computational problems posed by the environment, assuming that people are capable of optimally solving those problems. This differs from more traditional formal models of cognition, which focus on the psychological processes responsible for behavior. A basic challenge for rational models…
Descriptors: Models, Cognitive Processes, Psychology, Monte Carlo Methods
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
