Publication Date
| In 2026 | 0 |
| Since 2025 | 8 |
| Since 2022 (last 5 years) | 25 |
| Since 2017 (last 10 years) | 52 |
| Since 2007 (last 20 years) | 88 |
Descriptor
| Intelligent Tutoring Systems | 92 |
| Computer Science Education | 86 |
| Programming | 45 |
| Foreign Countries | 38 |
| Computer Software | 29 |
| Undergraduate Students | 27 |
| Artificial Intelligence | 22 |
| College Students | 21 |
| Electronic Learning | 21 |
| Instructional Effectiveness | 21 |
| Teaching Methods | 21 |
| More ▼ | |
Source
Author
| Barnes, Tiffany | 2 |
| Boyer, Kristy Elizabeth | 2 |
| Di Eugenio, Barbara | 2 |
| Fathi, Moein | 2 |
| Heeren, Bastiaan | 2 |
| Hooshyar, Danial | 2 |
| Hwang, Gwo-Jen | 2 |
| Jeuring, Johan | 2 |
| Lim, Heuiseok | 2 |
| Yousefi, Moslem | 2 |
| Ahmad, Rodina Binti | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 92 |
| Reports - Research | 65 |
| Reports - Evaluative | 14 |
| Reports - Descriptive | 10 |
| Information Analyses | 5 |
| Tests/Questionnaires | 4 |
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
| ACT Assessment | 1 |
| Big Five Inventory | 1 |
| Learning Style Inventory | 1 |
| Motivated Strategies for… | 1 |
What Works Clearinghouse Rating
Smitha S. Kumar; Michael A. Lones; Manuel Maarek; Hind Zantout – ACM Transactions on Computing Education, 2025
Programming demands a variety of cognitive skills, and mastering these competencies is essential for success in computer science education. The importance of formative feedback is well acknowledged in programming education, and thus, a diverse range of techniques has been proposed to generate and enhance formative feedback for programming…
Descriptors: Automation, Computer Science Education, Programming, Feedback (Response)
Fadoua Balabdaoui; Nora Dittmann-Domenichini; Henry Grosse; Claudia Schlienger; Gerd Kortemeyer – Discover Education, 2024
We report the results of a 4800-respondent survey among students at a technical university regarding their usage of artificial intelligence tools, as well as their expectations and attitudes about these tools. We find that many students have come to differentiated and thoughtful views and decisions regarding the use of artificial intelligence. The…
Descriptors: Foreign Countries, College Students, Artificial Intelligence, Student Attitudes
Yousaf, Yousra; Shoaib, Muhammad; Hassan, Muhammad Awais; Habiba, Ume – Interactive Learning Environments, 2023
Learning trend has been shifted from a conventional way to a digital way in the form of E-learning, but it faces a high dropout ratio. Lack of engagement is one of the primary factors reported for this issue as the same type of course content is presented to learners despite their different background, knowledge and learning styles. Different…
Descriptors: Intelligent Tutoring Systems, Cognitive Style, Learner Engagement, Academic Achievement
Maximiliano Paredes-Velasco; Isaac Lozano-Osorio; Diana Perez-Marin; Liliana Patricia Santacruz-Valencia – IEEE Transactions on Learning Technologies, 2024
Teaching programming is a topic that has generated a high level of interest among researchers in recent decades. In particular, multiple approaches to teaching visual programming have been explored, from the use of tools such as Scratch, robots, unplugged programming, or activities for the development of computational thinking. Despite the wide…
Descriptors: Visual Aids, Programming, Intelligent Tutoring Systems, Computer Oriented Programs
Wiegand, R. Paul; Bucci, Anthony; Kumar, Amruth N.; Albert, Jennifer; Gaspar, Alessio – ACM Transactions on Computing Education, 2022
In this article, we leverage ideas from the theory of coevolutionary computation to analyze interactions of students with problems. We introduce the idea of "informatively" easy or hard concepts. Our approach is different from more traditional analyses of problem difficulty such as item analysis in the sense that we consider Pareto…
Descriptors: Concept Formation, Difficulty Level, Computer Science Education, Problem Solving
Da Teng; Xiangyang Wang; Yanwei Xia; Yue Zhang; Lulu Tang; Qi Chen; Ruobing Zhang; Sujin Xie; Weiyong Yu – Education and Information Technologies, 2025
The swift advancement of artificial intelligence, especially large language models (LLMs), has generated novel prospects for improving educational methodologies. Nonetheless, the successful incorporation of these technologies into pedagogical methods, such as flipped classrooms, continues to pose a challenge. This study investigates the…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Flipped Classroom, Technology Uses in Education
Olaperi Okuboyejo; Sigrid Ewert; Ian Sanders – ACM Transactions on Computing Education, 2025
Regular expressions (REs) are often taught to undergraduate computer science majors in the Formal Languages and Automata (FLA) course; they are widely used to implement different software functionalities such as search mechanisms and data validation in diverse fields. Despite their importance, the difficulty of REs has been asserted many times in…
Descriptors: Automation, Feedback (Response), Error Patterns, Error Correction
Xieling Chen; Haoran Xie; S. Joe Qin; Fu Lee Wang; Yinan Hou – European Journal of Education, 2025
Artificial intelligence (AI) is increasingly exploited to promote student engagement. This study combined topic modelling, keyword analysis, trend test and systematic analysis methodologies to analyse AI-supported student engagement (AIsE) studies regarding research keywords and topics, AI roles, AI systems and algorithms, methods and domains,…
Descriptors: Artificial Intelligence, Learner Engagement, Technology Uses in Education, Electronic Learning
Manuel B. Garcia – Education and Information Technologies, 2025
The emergence of generative AI tools like ChatGPT has sparked investigations into their applications in teaching and learning. In computer programming education, efforts are underway to explore how this tool can enhance instructional practices. Despite the growing literature, there is a lack of synthesis on its use in this field. This rapid review…
Descriptors: Computer Science Education, Teaching Methods, Programming, Computer Uses in Education
Sirinda Palahan – IEEE Transactions on Learning Technologies, 2025
The rise of online programming education has necessitated more effective personalized interactions, a gap that PythonPal aims to fill through its innovative learning system integrated with a chatbot. This research delves into PythonPal's potential to enhance the online learning experience, especially in contexts with high student-to-teacher ratios…
Descriptors: Programming, Computer Science Education, Artificial Intelligence, Computer Mediated Communication
Guozhu Ding; Xiangyi Shi; Shan Li – Education and Information Technologies, 2024
In this study, we developed a classification system of programming errors based on the historical data of 680,540 programming records collected on the Online Judge platform. The classification system described six types of programming errors (i.e., syntax, logical, type, writing, misunderstanding, and runtime errors) and their connections with…
Descriptors: Programming, Computer Science Education, Classification, Graphs
Sychev, Oleg; Penskoy, Nikita; Anikin, Anton; Denisov, Mikhail; Prokudin, Artem – Education Sciences, 2021
Intelligent tutoring systems have become increasingly common in assisting students but are often aimed at isolated subject-domain tasks without creating a scaffolding system from lower- to higher-level cognitive skills, with low-level skills often neglected. We designed and developed an intelligent tutoring system, CompPrehension, which aims to…
Descriptors: Intelligent Tutoring Systems, Comprehension, Undergraduate Students, Computer Science Education
Vesin, Boban; Mangaroska, Katerina; Akhuseyinoglu, Kamil; Giannakos, Michail – ACM Transactions on Computing Education, 2022
Online learning systems should support students preparedness for professional practice by equipping them with the necessary skills while keeping them engaged and active. In that regard, the development of online learning systems that support students' development and engagement with programming is a challenging process. Early career computer…
Descriptors: Adaptive Testing, Online Courses, Programming, Computer Science Education
David Roldan-Alvarez; Francisco J. Mesa – IEEE Transactions on Education, 2024
Artificial intelligence (AI) in programming teaching is something that still has to be explored, since in this area assessment tools that allow grading the students work are the most common ones, but there are not many tools aimed toward providing feedback to the students in the process of creating their program. In this work a small sized…
Descriptors: Intelligent Tutoring Systems, Grading, Artificial Intelligence, Feedback (Response)
Almotairi, Maram; Fkih, Fethi – Journal of Education and e-Learning Research, 2022
The Question answering (QA) system plays a basic role in the acquisition of information and the e-learning environment is considered to be the field that is most in need of the question-answering system to help learners ask questions in natural language and get answers in short periods of time. The main problem in this context is how to understand…
Descriptors: Semantics, Natural Language Processing, Intelligent Tutoring Systems, Ambiguity (Semantics)

Peer reviewed
Direct link
