Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 4 |
| Since 2007 (last 20 years) | 7 |
Descriptor
Source
| Educational and Psychological… | 3 |
| Career and Technical… | 1 |
| International Journal of… | 1 |
| Research & Practice in… | 1 |
| Research Synthesis Methods | 1 |
| Review of Educational Research | 1 |
Author
| McNeish, Daniel | 2 |
| Algina, James | 1 |
| Aydin, Burak | 1 |
| Bogaert, Jasper | 1 |
| Carter, Rufus Lynn | 1 |
| Glass, Änne | 1 |
| Harring, Jeffrey R. | 1 |
| Hsieh, Chueh-An | 1 |
| Ickstadt, Katja | 1 |
| Knapp, Guido | 1 |
| Kundt, Günther | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 8 |
| Reports - Research | 6 |
| Reports - Descriptive | 1 |
| Reports - Evaluative | 1 |
Education Level
| Adult Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Weber, Frank; Knapp, Guido; Ickstadt, Katja; Kundt, Günther; Glass, Änne – Research Synthesis Methods, 2020
The standard estimator for the log odds ratio (the unconditional maximum likelihood estimator) and the delta-method estimator for its standard error are not defined if the corresponding 2 x 2 table contains at least one "zero cell". This is also an issue when estimating the overall log odds ratio in a meta-analysis. It is well known that…
Descriptors: Meta Analysis, Maximum Likelihood Statistics, Effect Size, Error Correction
Bogaert, Jasper; Loh, Wen Wei; Rosseel, Yves – Educational and Psychological Measurement, 2023
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error…
Descriptors: Factor Analysis, Regression (Statistics), Structural Equation Models, Error of Measurement
McNeish, Daniel; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…
Descriptors: Growth Models, Goodness of Fit, Error Correction, Sampling
McNeish, Daniel – Review of Educational Research, 2017
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
Descriptors: Models, Statistical Analysis, Sampling, Sample Size
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Lee, In Heok – Career and Technical Education Research, 2012
Researchers in career and technical education often ignore more effective ways of reporting and treating missing data and instead implement traditional, but ineffective, missing data methods (Gemici, Rojewski, & Lee, 2012). The recent methodological, and even the non-methodological, literature has increasingly emphasized the importance of…
Descriptors: Vocational Education, Data Collection, Maximum Likelihood Statistics, Educational Research
Hsieh, Chueh-An; Maier, Kimberly S. – International Journal of Research & Method in Education, 2009
The capacity of Bayesian methods in estimating complex statistical models is undeniable. Bayesian data analysis is seen as having a range of advantages, such as an intuitive probabilistic interpretation of the parameters of interest, the efficient incorporation of prior information to empirical data analysis, model averaging and model selection.…
Descriptors: Equal Education, Bayesian Statistics, Data Analysis, Comparative Analysis
Carter, Rufus Lynn – Research & Practice in Assessment, 2006
Many times in both educational and social science research it is impossible to collect data that is complete. When administering a survey, for example, people may answer some questions and not others. This missing data causes a problem for researchers using structural equation modeling (SEM) techniques for data analyses. Because SEM and…
Descriptors: Structural Equation Models, Error of Measurement, Data, Change Strategies

Peer reviewed
Direct link
