Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 5 |
| Since 2017 (last 10 years) | 5 |
| Since 2007 (last 20 years) | 5 |
Descriptor
| Natural Language Processing | 5 |
| Artificial Intelligence | 4 |
| Models | 3 |
| Prediction | 3 |
| Automation | 2 |
| French | 2 |
| Reading Comprehension | 2 |
| Age Differences | 1 |
| Algorithms | 1 |
| College Students | 1 |
| Computational Linguistics | 1 |
| More ▼ | |
Author
| Mihai Dascalu | 5 |
| Danielle S. McNamara | 4 |
| Stefan Ruseti | 3 |
| Micah Watanabe | 2 |
| Chaohua Ou | 1 |
| Danielle McNamara | 1 |
| Dragos-Georgian Corlatescu | 1 |
| Ionut Paraschiv | 1 |
| Langdon Holmes | 1 |
| Razvan Paroiu | 1 |
| Robert-Mihai Botarleanu | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 5 |
| Reports - Research | 5 |
| Information Analyses | 1 |
Education Level
| High Schools | 1 |
| Higher Education | 1 |
| Postsecondary Education | 1 |
| Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Dragos-Georgian Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Modeling reading comprehension processes is a critical task for Learning Analytics, as accurate models of the reading process can be used to match students to texts, identify appropriate interventions, and predict learning outcomes. This paper introduces an improved version of the Automated Model of Comprehension, namely version 4.0. AMoC has its…
Descriptors: Computer Software, Artificial Intelligence, Learning Analytics, Natural Language Processing
Wesley Morris; Scott Crossley; Langdon Holmes; Chaohua Ou; Mihai Dascalu; Danielle McNamara – International Journal of Artificial Intelligence in Education, 2025
As intelligent textbooks become more ubiquitous in classrooms and educational settings, the need to make them more interactive arises. An alternative is to ask students to generate knowledge in response to textbook content and provide feedback about the produced knowledge. This study develops Natural Language Processing models to automatically…
Descriptors: Formative Evaluation, Feedback (Response), Textbooks, Artificial Intelligence
Razvan Paroiu; Stefan Ruseti; Mihai Dascalu; Stefan Trausan-Matu; Danielle S. McNamara – Grantee Submission, 2023
The exponential growth of scientific publications increases the effort required to identify relevant articles. Moreover, the scale of studies is a frequent barrier to research as the majority of studies are low or medium-scaled and do not generalize well while lacking statistical power. As such, we introduce an automated method that supports the…
Descriptors: Science Education, Educational Research, Scientific and Technical Information, Journal Articles
Robert-Mihai Botarleanu; Micah Watanabe; Mihai Dascalu; Scott A. Crossley; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Age of Acquisition (AoA) scores approximate the age at which a language speaker fully understands a word's semantic meaning and represent a quantitative measure of the relative difficulty of words in a language. AoA word lists exist across various languages, with English having the most complete lists that capture the largest percentage of the…
Descriptors: Multilingualism, English (Second Language), Second Language Learning, Second Language Instruction

Peer reviewed
Direct link
