NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Elissa Milto; Chelsea Andrews; Merredith Portsmore; Christopher Wright – Eye on Education, 2025
"Introducing Engineering to K-8 Students" will provide you with the tools you need to incorporate engineering design into your classroom. Rather than prescribing a specific curriculum to follow, this book will help you engage your students with hands-on, open-ended engineering design problems that can be easily integrated into your…
Descriptors: Engineering, Design, Middle School Teachers, Elementary School Teachers
Cynthia P. May; David Desplaces; David M. Wyman – Management Teaching Review, 2022
Universal Design (UD) involves the creation of accessible, flexible products that are functional for a wide population of users. Our problem-based learning exercise challenges student teams to create products and services guided by the principles of UD. After teams generate their new product concept, a spokesperson from each team pitches it in…
Descriptors: Access to Education, Problem Solving, Design, Entrepreneurship
Peer reviewed Peer reviewed
Direct linkDirect link
Parks, Melissa – Science Activities: Projects and Curriculum Ideas in STEM Classrooms, 2020
Maximizing classroom time to include meaningful content-based learning with fun engaging activities that simultaneously challenge and encourage students is a hallmark of a successful school day. This article shares one instructional approach that does a model eliciting activity (MEA). A MEA is a real-world, problem-based scenario framed around a…
Descriptors: Elementary School Science, Teaching Methods, Problem Based Learning, Letters (Correspondence)
Peer reviewed Peer reviewed
Direct linkDirect link
Sumrall, William J.; Sumrall, Kristen M. – Science Activities: Classroom Projects and Curriculum Ideas, 2018
The NGSS MS-ETS1 Engineering Design (1-4) is the focus of the article. Development of a challenging problem-based activity that is an improvement over the traditional egg drop competition is emphasized. Quantification of data collected and real-world relevance are two activity components that are viewed as improvements over the egg drop. The…
Descriptors: Engineering, Design, Problem Based Learning, Science Activities
Peer reviewed Peer reviewed
Direct linkDirect link
McPherson, Heather – Science Teacher, 2018
Students often confuse the functional differences between motion "transmission" and "transformation" systems. Students find it difficult to conceptualize differences between the specific systems. In this article, the author describes a technology and engineering unit that incorporates problem-based learning (PBL) to assist…
Descriptors: Science Instruction, Scientific Concepts, Motion, Problem Based Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Senne, Jessica; Coxon, Steve V. – Gifted Child Today, 2016
The United States is dependent on innovations in science, technology, engineering, and math (STEM) fields for the growth of its economy and improvements to quality of life, but too few students are prepared for them. To help meet the challenges in filling the STEM pipeline, teachers of gifted elementary students can nurture important talents,…
Descriptors: Architecture, Spatial Ability, STEM Education, Talent Development
Peer reviewed Peer reviewed
Direct linkDirect link
Debs, Luciana; Kelley, Todd – Technology and Engineering Teacher, 2015
Teaching design to middle and high school students can be challenging. One of the first procedures in teaching design is to help students gather information that will be useful in the design phase. An early stage of engineering design as described by Lewis (2005), calls for the designer to establish the state of the art of the problem. During this…
Descriptors: STEM Education, Horticulture, Engineering Education, Naturalistic Observation
Peer reviewed Peer reviewed
Kafai, Yasmin B.; Ching, Cynthia Carter – Journal of the Learning Sciences, 2001
Investigates whether science permeates the design environment and is thus contexted within the other activities of collaborative management and technology. Focuses on which contexts gave rise to science talk. Studies a classroom with (n=33) students divided into seven teams. (Contains 46 references.) (Author/YDS)
Descriptors: Computer Software, Cooperation, Design, Educational Technology