NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20250
Since 2022 (last 5 years)0
Since 2017 (last 10 years)0
Since 2007 (last 20 years)6
Audience
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive…1
What Works Clearinghouse Rating
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Katz, Sandra; Albacete, Patricia; Jordan, Pamela – Grantee Submission, 2016
This poster reports on a study that compared three types of summaries at the end of natural-language tutorial dialogues and a no-dialogue control, to determine which type of summary, if any, best predicted learning gains. Although we found no significant differences between conditions, analyses of gender differences indicate that female students…
Descriptors: Natural Language Processing, Intelligent Tutoring Systems, Reflection, Dialogs (Language)
Lipschultz, Michael; Litman, Diane; Katz, Sandra; Albacete, Patricia; Jordan, Pamela – Grantee Submission, 2014
Post-problem reflective tutorial dialogues between human tutors and students are examined to predict when the tutor changed the level of abstraction from the student's preceding turn (i.e., used more general terms or more specific terms); such changes correlate with learning. Prior work examined lexical changes in abstraction. In this work, we…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Semantics, Abstract Reasoning
Peer reviewed Peer reviewed
Direct linkDirect link
Baker, Ryan S.; Hershkovitz, Arnon; Rossi, Lisa M.; Goldstein, Adam B.; Gowda, Sujith M. – Journal of the Learning Sciences, 2013
We present a new method for analyzing a student's learning over time for a specific skill: analysis of the graph of the student's moment-by-moment learning over time. Moment-by-moment learning is calculated using a data-mined model that assesses the probability that a student learned a skill or concept at a specific time during learning (Baker,…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Probability, Skill Development
Peer reviewed Peer reviewed
Direct linkDirect link
Baker, Ryan S. J. D.; Goldstein, Adam B.; Heffernan, Neil T. – International Journal of Artificial Intelligence in Education, 2011
Intelligent tutors have become increasingly accurate at detecting whether a student knows a skill, or knowledge component (KC), at a given time. However, current student models do not tell us exactly at which point a KC is learned. In this paper, we present a machine-learned model that assesses the probability that a student learned a KC at a…
Descriptors: Intelligent Tutoring Systems, Mastery Learning, Probability, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Hausmann, Robert G. M.; VanLehn, Kurt – International Journal of Artificial Intelligence in Education, 2010
Self-explaining is a domain-independent learning strategy that generally leads to a robust understanding of the domain material. However, there are two potential explanations for its effectiveness. First, self-explanation generates additional "content" that does not exist in the instructional materials. Second, when compared to…
Descriptors: Instructional Design, Intelligent Tutoring Systems, College Students, Predictor Variables
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries