NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20252
Since 2022 (last 5 years)4
Since 2017 (last 10 years)7
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Navreet Kaur Rana – Higher Education for the Future, 2025
The article is an exploratory study assessing the stance selected higher education institutes (HEIs) have adopted regarding the usage of generative artificial intelligence (AI) applications in academic research. The HEIs are selected based on purposive sampling in order to showcase different stances they have adopted to curb plagiarism and uphold…
Descriptors: Artificial Intelligence, Technology Uses in Education, Higher Education, Plagiarism
Peer reviewed Peer reviewed
Direct linkDirect link
Galit Agmon; Sameer Pradhan; Sharon Ash; Naomi Nevler; Mark Liberman; Murray Grossman; Sunghye Cho – Journal of Speech, Language, and Hearing Research, 2024
Purpose: Multiple methods have been suggested for quantifying syntactic complexity in speech. We compared eight automated syntactic complexity metrics to determine which best captured verified syntactic differences between old and young adults. Method: We used natural speech samples produced in a picture description task by younger (n = 76, ages…
Descriptors: Young Adults, Older Adults, Undergraduate Students, Caregivers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ellana Black; Kristen Betts – Impacting Education: Journal on Transforming Professional Practice, 2025
This convergent mixed methods research study investigated how a small, non-representative sample of Educational Doctorate (EdD) faculty perceive and use generative AI and how they have leveraged the technology to support EdD students. A cross-sectional survey was used to gather data from 27 EdD faculty members to assess their generative AI…
Descriptors: Doctoral Programs, Education Majors, College Faculty, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Švábenský, Valdemar; Baker, Ryan S.; Zambrano, Andrés; Zou, Yishan; Slater, Stefan – International Educational Data Mining Society, 2023
Students who take an online course, such as a MOOC, use the course's discussion forum to ask questions or reach out to instructors when encountering an issue. However, reading and responding to students' questions is difficult to scale because of the time needed to consider each message. As a result, critical issues may be left unresolved, and…
Descriptors: Generalization, Computer Mediated Communication, MOOCs, State Universities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lynette Hazelton; Jessica Nastal; Norbert Elliot; Jill Burstein; Daniel F. McCaffrey – Journal of Response to Writing, 2021
In writing studies research, automated writing evaluation technology is typically examined for a specific, often narrow purpose: to evaluate a particular writing improvement measure, to mine data for changes in writing performance, or to demonstrate the effectiveness of a single technology and accompanying validity arguments. This article adopts a…
Descriptors: Formative Evaluation, Writing Evaluation, Automation, Natural Language Processing
Lynette Hazelton; Jessica Nastal; Norbert Elliot; Jill Burstein; Daniel F. McCaffrey – Grantee Submission, 2021
In writing studies research, automated writing evaluation technology is typically examined for a specific, often narrow purpose: to evaluate a particular writing improvement measure, to mine data for changes in writing performance, or to demonstrate the effectiveness of a single technology and accompanying validity arguments. This article adopts a…
Descriptors: Formative Evaluation, Writing Evaluation, Automation, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Stone, Cathlyn; Donnelly, Patrick J.; Dale, Meghan; Capello, Sarah; Kelly, Sean; Godley, Amanda; D'Mello, Sidney K. – International Educational Data Mining Society, 2019
We examine the ability of supervised text classification models to identify several discourse properties from teachers' speech with an eye for providing teachers with meaningful automated feedback about the quality of their classroom discourse. We collected audio recordings from 28 teachers from 10 schools in 164 authentic classroom sessions,…
Descriptors: Classification, Classroom Communication, Audio Equipment, Feedback (Response)