NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Individuals with Disabilities…1
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations2
Showing 1 to 15 of 216 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rino Richardo; Siti Irene Astuti Dwiningrum; Rahayu Condro Murti; Ariyadi Wijaya; Robiatul Adawiya; Ivan Luthfi Ihwani; Martalia Ardiyaningrum; Anggi Erna Aryani – Journal of Education and Learning (EduLearn), 2025
The aim of this qualitative research is to describe the thinking process as a profile of students' mathematical computational thinking (CT) skills in terms of CT attitudes. The subjects in this study were 66 junior high school students in grade IX. There were three students taken by purposive sampling based on high, medium, and low CT attitude.…
Descriptors: Computation, Thinking Skills, Junior High School Students, Grade 9
Catherine Underwood – Australian Council for Educational Research, 2025
Mathematical self-efficacy refers to an individual's belief in their ability to successfully perform tasks and solve problems in mathematics. This Snapshot examines gender differences in mathematical self-efficacy and the levels of confidence that students feel in doing a range of formal and applied mathematics tasks. It also examines the extent…
Descriptors: Mathematics Skills, Self Efficacy, Gender Differences, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gunawan; Ferry Ferdianto; Nuhyal Ulia; Lukmanul Akhsani; Reni Untarti; Istiqomah – Mathematics Teaching Research Journal, 2025
Computational thinking is an essential ability for students in the 21st century. Therefore, this study described students' mathematical computational thinking process in terms of self-efficacy of eighth graders, consisting of 32 students. The applied instruments were self-efficacy questionnaires, computational thinking ability tests, and interview…
Descriptors: Thinking Skills, Computation, Self Efficacy, Grade 8
Peer reviewed Peer reviewed
Direct linkDirect link
Vance Kite; Soonhye Park – Journal of Research in Science Teaching, 2024
There is growing recognition in the education community that the problem-solving practices that comprise computational thinking (CT) are a fundamental component of both life and work in the twenty-first century. Historically, opportunities to learn CT have been confined to computer science (CS) and elective courses that lack racial, ethnic, and…
Descriptors: Secondary School Teachers, Science Teachers, Computation, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Chenyue Wang; Chang Lu; Fu Chen; Xueliang Liu; Qin Zhao; Shuai Wang – Education and Information Technologies, 2024
Computational thinking (CT) competency is essential for K-12 students in the digital societies. Understanding the relationship between students' CT and relevant factors contributes to implementing and improving CT education. Most previous studies investigated the effect of demographic or attitudinal factors on CT performance; whereas few research…
Descriptors: Self Efficacy, Thinking Skills, Problem Solving, Computation
Jonathan Robert Bowers – ProQuest LLC, 2024
To make sense of our interconnected and algorithm driven world, students increasingly need proficiency with computational thinking (CT), systems thinking (ST), and computational modeling. One aspect of computational modeling that can support students with CT, ST, and modeling is testing and debugging. Testing and debugging enables students to…
Descriptors: Troubleshooting, Thinking Skills, Computation, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Clayton Cohn; Caitlin Snyder; Joyce Horn Fonteles; Ashwin T. S.; Justin Montenegro; Gautam Biswas – British Journal of Educational Technology, 2025
Recent advances in generative artificial intelligence (AI) and multimodal learning analytics (MMLA) have allowed for new and creative ways of leveraging AI to support K12 students' collaborative learning in STEM+C domains. To date, there is little evidence of AI methods supporting students' collaboration in complex, open-ended environments. AI…
Descriptors: Cooperation, Researchers, Artificial Intelligence, STEM Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Irem Nur Çelik; Kati Bati – Informatics in Education, 2025
In this study, we aimed to investigate the impact of cooperative learning on the computational thinking skills and academic performances of middle school students in the computational problem-solving approach. We used the pretest-posttest control group design of the quasiexperimental method. In the research, computational problem-solving…
Descriptors: Cooperative Learning, Academic Achievement, Computation, Thinking Skills
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Astuti Astuti; Evi Suryawati; Elfis Suanto; Putri Yuanita; Eddy Noviana – Journal of Pedagogical Research, 2025
Computational Thinking (CT) skills are increasingly recognized as essential for junior high school students, especially in addressing the demands of the digital era. This study explores how CT skills--decomposition, pattern recognition, abstraction, and algorithmic thinking--manifest in learning statistics based on students' cognitive abilities. A…
Descriptors: Computation, Thinking Skills, Junior High School Students, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Huiyan Ye; Oi-Lam Ng; Zhihao Cui – Journal of Educational Computing Research, 2024
Computational thinking (CT) has received much attention in mathematics education in recent years, and researchers have begun to experiment with the integration of CT into mathematics education to promote students' CT and mathematical thinking (MT) development. However, there is a lack of empirical evidence and new theoretical perspectives on the…
Descriptors: Programming, Thinking Skills, Mathematics Skills, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Lorien Cafarella; Lucas Vasconcelos – Education and Information Technologies, 2025
Middle school students often enter Computer Science (CS) classes without previous CS or Computational Thinking (CT) instruction. This study evaluated how Code.org's block-based programming curriculum affects middle school students' CT skills and attitudes toward CT and CS. Sixteen students participated in the study. This was a mixed methods action…
Descriptors: Middle School Students, Computation, Thinking Skills, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Gamze Kurt; Özge Çakioglu – Digital Experiences in Mathematics Education, 2024
This study aims to investigate students' computational thinking (CT) through mathematical tasks integrated with programming in Scratch. Participants completed four tasks that required students to solve coding problems, which were focused on prime numbers and the prime factorization algorithm. The study was designed as a case study and the unit of…
Descriptors: Grade 7, Case Studies, Mathematics Education, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Hamid Sanei; Jennifer B. Kahn; Rabia Yalcinkaya; Shiyan Jiang; Changzhao Wang – Journal of Science Education and Technology, 2024
Data and computational literacies empower youth to be active participants and future leaders in our increasingly data-driven society. We conducted a design-based research project in which a small group (n = 5) of high school youth from diverse backgrounds learned how to code and create data visualizations and stories with public data about climate…
Descriptors: Coding, Data Use, Science and Society, Story Telling
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ratni Purwasih; Turmudi; Jarnawi Afgani Dahlan – Journal on Mathematics Education, 2024
Some countries, including Indonesia, have a framework for understanding how students receive and process math concepts as new knowledge through learning styles. Learning style, particularly Kolb's model, is one of the learning styles that contribute to students' success in learning. Experts have explored the characteristics of Kolb's learning…
Descriptors: Thinking Skills, Computation, Mathematical Concepts, Cognitive Style
Peer reviewed Peer reviewed
Direct linkDirect link
Albarracín, Lluís; Ferrando, Irene; Gorgorió, Núria – International Journal of Science and Mathematics Education, 2021
This paper presents a qualitative study developed with a group of 16-year-old students who were asked to estimate large numbers of elements on a bounded surface. Taking the realistic mathematics education framework as a reference, we presented the students with an activity sequence comprised of four different tasks--each one with a different…
Descriptors: Computation, Cognitive Processes, Secondary School Students, Problem Solving
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  15