Publication Date
In 2025 | 3 |
Since 2024 | 6 |
Since 2021 (last 5 years) | 20 |
Since 2016 (last 10 years) | 20 |
Since 2006 (last 20 years) | 20 |
Descriptor
Source
Author
Amisha Jindal | 3 |
Ashish Gurung | 3 |
Erin Ottmar | 3 |
Ji-Eun Lee | 3 |
Reilly Norum | 3 |
Sanika Nitin Patki | 3 |
Botelho, Anthony | 2 |
Chan, Jenny Yun-Chen | 2 |
Juanita Hicks | 2 |
Lee, Ji-Eun | 2 |
Ottmar, Erin | 2 |
More ▼ |
Publication Type
Reports - Research | 20 |
Journal Articles | 10 |
Speeches/Meeting Papers | 4 |
Numerical/Quantitative Data | 1 |
Tests/Questionnaires | 1 |
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 4 |
Massachusetts Comprehensive… | 1 |
Measures of Academic Progress | 1 |
What Works Clearinghouse Rating
Hanife Merve Erdogan; Nazan Sezen Yüksel – Acta Didactica Napocensia, 2023
The aim of this study is to classify the subjects and skills of middle school mathematics course in the context of MATH Taxonomy and to determine their relations. For this purpose, the questions and answers related to the mathematics subtest of a national exam were analyzed over the answers of 20154 students. The study continued with the analysis…
Descriptors: Mathematics Skills, Taxonomy, Computer Software, Probability
Hai Li; Wanli Xing; Chenglu Li; Wangda Zhu; Simon Woodhead – Journal of Learning Analytics, 2025
Knowledge tracing (KT) is a method to evaluate a student's knowledge state (KS) based on their historical problem-solving records by predicting the next answer's binary correctness. Although widely applied to closed-ended questions, it lacks a detailed option tracing (OT) method for assessing multiple-choice questions (MCQs). This paper introduces…
Descriptors: Mathematics Tests, Multiple Choice Tests, Computer Assisted Testing, Problem Solving
Owen Henkel; Hannah Horne-Robinson; Maria Dyshel; Greg Thompson; Ralph Abboud; Nabil Al Nahin Ch; Baptiste Moreau-Pernet; Kirk Vanacore – Journal of Learning Analytics, 2025
This paper introduces AMMORE, a new dataset of 53,000 math open-response question-answer pairs from Rori, a mathematics learning platform used by middle and high school students in several African countries. Using this dataset, we conducted two experiments to evaluate the use of large language models (LLM) for grading particularly challenging…
Descriptors: Learning Analytics, Learning Management Systems, Mathematics Instruction, Middle School Students
Burhan Ogut; Blue Webb; Juanita Hicks; Ruhan Circi; Michelle Yin – Grantee Submission, 2024
In this study, we explore the application of process mining techniques on assessment log data to explore problem-solving strategies in Algebra. By analyzing sequences of student activities, we demonstrate the significant potential of process mining in identifying problem-solving strategies that lead to successful and unsuccessful outcomes. Our…
Descriptors: Mathematics Skills, Problem Solving, Learning Analytics, Algebra
Mark Locherer – Cogent Education, 2024
In this article, we outline the process undertaken to establish and evaluate a mathematics centre at the Ravensburg-Weingarten University of Applied Sciences. Firstly, we outline some of the current research into centre evaluation. Secondly, we give a brief overview of our centre, including details on staffing, teaching format, goals, etc.…
Descriptors: Universities, Mathematics Education, Teaching Methods, Program Evaluation
Congning Ni; Bhashithe Abeysinghe; Juanita Hicks – International Electronic Journal of Elementary Education, 2025
The National Assessment of Educational Progress (NAEP), often referred to as The Nation's Report Card, offers a window into the state of U.S. K-12 education system. Since 2017, NAEP has transitioned to digital assessments, opening new research opportunities that were previously impossible. Process data tracks students' interactions with the…
Descriptors: Reaction Time, Multiple Choice Tests, Behavior Change, National Competency Tests
Jiang, Yang; Gong, Tao; Saldivia, Luis E.; Cayton-Hodges, Gabrielle; Agard, Christopher – Large-scale Assessments in Education, 2021
In 2017, the mathematics assessments that are part of the National Assessment of Educational Progress (NAEP) program underwent a transformation shifting the administration from paper-and-pencil formats to digitally-based assessments (DBA). This shift introduced new interactive item types that bring rich process data and tremendous opportunities to…
Descriptors: Data Use, Learning Analytics, Test Items, Measurement
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Lee, Ji-Eun; Chan, Jenny Yun-Chen; Botelho, Anthony; Ottmar, Erin – Educational Technology Research and Development, 2022
Online educational games have been widely used to support students' mathematics learning. However, their effects largely depend on student-related factors, the most prominent being their behavioral characteristics as they play the games. In this study, we applied a set of learning analytics methods (k-means clustering, data visualization) to…
Descriptors: Computer Games, Educational Games, Mathematics Instruction, Learning Processes
Lee, Ji-Eun; Chan, Jenny Yun-Chen; Botelho, Anthony; Ottmar, Erin – Grantee Submission, 2022
Online educational games have been widely used to support students' mathematics learning. However, their effects largely depend on student-related factors, the most prominent being their behavioral characteristics as they play the games. In this study, we applied a set of learning analytics methods ("k"-means clustering, data…
Descriptors: Computer Games, Educational Games, Mathematics Instruction, Learning Processes
Yikai Lu; Teresa M. Ober; Cheng Liu; Ying Cheng – Grantee Submission, 2022
Machine learning methods for predictive analytics have great potential for uncovering trends in educational data. However, simple linear models still appear to be most widely used, in part, because of their interpretability. This study aims to address the issues of interpretability of complex machine learning classifiers by conducting feature…
Descriptors: Prediction, Statistics Education, Data Analysis, Learning Analytics
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Halpin, Peter – Journal of Learning Analytics, 2021
This paper addresses dynamical interdependence among the actions of group members. I assume that the actions of each member can be represented as nodes of a dynamical network and then collect the nodes into disjoint subsets (components) representing the individual group members. Interdependence among group members' actions can then be defined with…
Descriptors: Learning Analytics, Group Dynamics, Group Membership, Interpersonal Relationship
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Previous Page | Next Page »
Pages: 1 | 2