NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 88 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Robert D. Plumley; Matthew L. Bernacki; Jeffrey A. Greene; Shelbi Kuhlmann; Mladen Rakovic; Christopher J. Urban; Kelly A. Hogan; Chaewon Lee; Abigail T. Panter; Kathleen M. Gates – British Journal of Educational Technology, 2024
Even highly motivated undergraduates drift off their STEM career pathways. In large introductory STEM classes, instructors struggle to identify and support these students. To address these issues, we developed co-redesign methods in partnership with disciplinary experts to create high-structure STEM courses that better support students and produce…
Descriptors: Learning Analytics, Prediction, Undergraduate Study, Biology
Hahn, Lisa M. – ProQuest LLC, 2023
In the post-COVID-19 higher education landscape, administrators must question the legacy of their programs and methods to rise up and meet not only the technological integrations that are a part of educational infrastructures but the demands of the profession moving it beyond the twenty-first century. Since the twentieth-century, first-year…
Descriptors: Intervention, Grades (Scholastic), First Year Seminars, Teacher Characteristics
Peer reviewed Peer reviewed
Direct linkDirect link
Qin Ni; Yifei Mi; Yonghe Wu; Liang He; Yuhui Xu; Bo Zhang – IEEE Transactions on Learning Technologies, 2024
Learning style recognition is an indispensable part of achieving personalized learning in online learning systems. The traditional inventory method for learning style identification faces the limitations such as subject and static characteristics. Therefore, an automatic and reliable learning style recognition mechanism is designed in this…
Descriptors: Cognitive Style, Electronic Learning, Prediction, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Smithers, Laura – Learning, Media and Technology, 2023
This article examines the work of predictive analytics in shaping the social worlds in which they thrive, and in particular the world of the first year of Great State University's student success initiative. Specifically, this article investigates the following research paradox: predictive analytics, as driven by a logic premised on predicting the…
Descriptors: Prediction, Learning Analytics, Academic Achievement, College Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Montree Chinsomboon; Pallop Piriyasurawong – Higher Education Studies, 2024
The article is in the second phase of research is about "the big data architecture for pre-teacher preparation supply chain with prescriptive analytics of higher education in Thailand". The objectives of the study were (1) to study the pre-teacher preparation supply chain in Thailand, (2) to develop a model the big data system for the…
Descriptors: Supply and Demand, Information Management, Preservice Teacher Education, Preservice Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Dalia Khairy; Nouf Alharbi; Mohamed A. Amasha; Marwa F. Areed; Salem Alkhalaf; Rania A. Abougalala – Education and Information Technologies, 2024
Student outcomes are of great importance in higher education institutions. Accreditation bodies focus on them as an indicator to measure the performance and effectiveness of the institution. Forecasting students' academic performance is crucial for every educational establishment seeking to enhance performance and perseverance of its students and…
Descriptors: Prediction, Tests, Scores, Information Retrieval
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kasra Lekan; Zachary A. Pardos – Journal of Learning Analytics, 2025
Choosing an undergraduate major is an important decision that impacts academic and career outcomes. In this work, we investigate augmenting personalized human advising for major selection using a large language model (LLM), GPT-4. Through a three-phase survey, we compare GPT suggestions and responses for undeclared first- and second-year students…
Descriptors: Technology Uses in Education, Artificial Intelligence, Academic Advising, Majors (Students)
Peer reviewed Peer reviewed
Direct linkDirect link
Hadyaoui, Asma; Cheniti-Belcadhi, Lilia – Smart Learning Environments, 2023
This article introduces an ontology-based framework for group assessment analytics that investigates the impact of intra-group interactions on group performance within the context of project-based collaborative learning (PBCL). Additionally, it aims to predict learners' performance based on these interactions. The study involved 312 first-degree…
Descriptors: Learning Analytics, Academic Achievement, Prediction, Student Projects
Peer reviewed Peer reviewed
Direct linkDirect link
Khalid Alalawi; Rukshan Athauda; Raymond Chiong; Ian Renner – Education and Information Technologies, 2025
Learning analytics intervention (LAI) studies aim to identify at-risk students early during an academic term using predictive models and facilitate educators to provide effective interventions to improve educational outcomes. A major impediment to the uptake of LAI is the lack of access to LAI infrastructure by educators to pilot LAI, which…
Descriptors: Intervention, Learning Analytics, Guidelines, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Caspari-Sadeghi, Sima – Cogent Education, 2023
Data-driven decision-making and data-intensive research are becoming prevalent in many sectors of modern society, i.e. healthcare, politics, business, and entertainment. During the COVID-19 pandemic, huge amounts of educational data and new types of evidence were generated through various online platforms, digital tools, and communication…
Descriptors: Learning Analytics, Data Analysis, Higher Education, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Deho, Oscar Blessed; Joksimovic, Srecko; Li, Jiuyong; Zhan, Chen; Liu, Jixue; Liu, Lin – IEEE Transactions on Learning Technologies, 2023
Many educational institutions are using predictive models to leverage actionable insights using student data and drive student success. A common task has been predicting students at risk of dropping out for the necessary interventions to be made. However, issues of discrimination by these predictive models based on protected attributes of students…
Descriptors: Learning Analytics, Models, Student Records, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Deho, Oscar Blessed; Zhan, Chen; Li, Jiuyong; Liu, Jixue; Liu, Lin; Duy Le, Thuc – British Journal of Educational Technology, 2022
With the widespread use of learning analytics (LA), ethical concerns about fairness have been raised. Research shows that LA models may be biased against students of certain demographic subgroups. Although fairness has gained significant attention in the broader machine learning (ML) community in the last decade, it is only recently that attention…
Descriptors: Ethics, Learning Analytics, Social Bias, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Sheikh, Riyaz Abdullah; Bhatia, Surbhi; Metre, Sujit Gajananrao; Faqihi, Ali Yahya A. – Journal of Applied Research in Higher Education, 2022
Purpose: In spite of the popularity of learning analytics (LA) in higher education institutions (HEIs), the success rate and value gained through LA projects is still little and unclear. The existing research on LA focusses more on tactical capabilities rather than its effect on organizational value. The key questions are what are the expected…
Descriptors: Learning Analytics, Higher Education, Prediction, Information Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Kelli A. Bird; Benjamin L. Castleman; Yifeng Song – Journal of Policy Analysis and Management, 2025
Predictive analytics are increasingly pervasive in higher education. However, algorithmic bias has the potential to reinforce racial inequities in postsecondary success. We provide a comprehensive and translational investigation of algorithmic bias in two separate prediction models--one predicting course completion, the second predicting degree…
Descriptors: Algorithms, Technology Uses in Education, Bias, Racism
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6