NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Nesrine Mansouri; Mourad Abed; Makram Soui – Education and Information Technologies, 2024
Selecting undergraduate majors or specializations is a crucial decision for students since it considerably impacts their educational and career paths. Moreover, their decisions should match their academic background, interests, and goals to pursue their passions and discover various career paths with motivation. However, such a decision remains…
Descriptors: Undergraduate Students, Decision Making, Majors (Students), Specialization
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cohausz, Lea; Tschalzev, Andrej; Bartelt, Christian; Stuckenschmidt, Heiner – International Educational Data Mining Society, 2023
Demographic features are commonly used in Educational Data Mining (EDM) research to predict at-risk students. Yet, the practice of using demographic features has to be considered extremely problematic due to the data's sensitive nature, but also because (historic and representation) biases likely exist in the training data, which leads to strong…
Descriptors: Information Retrieval, Data Processing, Pattern Recognition, Information Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Bertolini, Roberto; Finch, Stephen J.; Nehm, Ross H. – International Journal of Educational Technology in Higher Education, 2021
Educators seek to harness knowledge from educational corpora to improve student performance outcomes. Although prior studies have compared the efficacy of data mining methods (DMMs) in pipelines for forecasting student success, less work has focused on identifying a set of relevant features prior to model development and quantifying the stability…
Descriptors: Data Processing, Prediction, Validity, Undergraduate Students
Yukselturk, Erman; Ozekes, Serhat; Turel, Yalin Kilic – European Journal of Open, Distance and E-Learning, 2014
This study examined the prediction of dropouts through data mining approaches in an online program. The subject of the study was selected from a total of 189 students who registered to the online Information Technologies Certificate Program in 2007-2009. The data was collected through online questionnaires (Demographic Survey, Online Technologies…
Descriptors: Online Courses, Distance Education, Dropout Characteristics, Prediction
Niemi, David; Gitin, Elena – International Association for Development of the Information Society, 2012
An underlying theme of this paper is that it can be easier and more efficient to conduct valid and effective research studies in online environments than in traditional classrooms. Taking advantage of the "big data" available in an online university, we conducted a study in which a massive online database was used to predict student…
Descriptors: Higher Education, Online Courses, Academic Persistence, Identification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection
International Association for Development of the Information Society, 2012
The IADIS CELDA 2012 Conference intention was to address the main issues concerned with evolving learning processes and supporting pedagogies and applications in the digital age. There had been advances in both cognitive psychology and computing that have affected the educational arena. The convergence of these two disciplines is increasing at a…
Descriptors: Academic Achievement, Academic Persistence, Academic Support Services, Access to Computers