Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 12 |
Descriptor
Data Processing | 12 |
Models | 12 |
Data Analysis | 8 |
Foreign Countries | 6 |
Online Courses | 6 |
Artificial Intelligence | 5 |
Blended Learning | 5 |
Classification | 5 |
College Students | 5 |
Data Collection | 5 |
Educational Technology | 5 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 7 |
Reports - Research | 6 |
Collected Works - Proceedings | 4 |
Dissertations/Theses -… | 1 |
Information Analyses | 1 |
Education Level
Audience
Location
Australia | 2 |
Brazil | 2 |
Netherlands | 2 |
Asia | 1 |
China | 1 |
Connecticut | 1 |
Costa Rica | 1 |
Croatia | 1 |
Denmark | 1 |
Egypt | 1 |
Estonia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
Rosenberg Self Esteem Scale | 1 |
What Works Clearinghouse Rating
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Nesrine Mansouri; Mourad Abed; Makram Soui – Education and Information Technologies, 2024
Selecting undergraduate majors or specializations is a crucial decision for students since it considerably impacts their educational and career paths. Moreover, their decisions should match their academic background, interests, and goals to pursue their passions and discover various career paths with motivation. However, such a decision remains…
Descriptors: Undergraduate Students, Decision Making, Majors (Students), Specialization
Olga Ovtšarenko – Discover Education, 2024
Machine learning (ML) methods are among the most promising technologies with wide-ranging research opportunities, particularly in the field of education, where they can be used to enhance student learning outcomes. This study explores the potential of machine learning algorithms to build and train models using log data from the "3D…
Descriptors: Artificial Intelligence, Algorithms, Technology Uses in Education, Opportunities
Verma, Anil; Singh, Aman; Lughofer, Edwin; Cheng, Xiaochun; Abualsaud, Khalid – Journal of Computing in Higher Education, 2021
Sustainable quality education is a big challenge even for the developed countries. In response to this, education 4.0 is gradually expanding as a new era of education. This work intends to unfold some hidden parameters that are affecting the quality education ecosystem (QEE). Academic loafing, unawareness, non-participation, dissatisfaction, and…
Descriptors: Educational Quality, Ecology, Sustainability, Higher Education
Varun Mandalapu – ProQuest LLC, 2021
Educational data mining focuses on exploring increasingly large-scale data from educational settings, such as Learning Management Systems (LMS), and developing computational methods to understand students' behaviors and learning settings better. There has been a multitude of research dedicated to studying the student learning process, leading to…
Descriptors: Models, Student Behavior, Learning Management Systems, Data Use
Jakab, Imrich; Ševcík, Michal; Grežo, Henrich – Electronic Journal of e-Learning, 2017
The methods of geospatial data processing are being continually innovated, and universities that are focused on educating experts in Environmental Science should reflect this reality with an elaborate and purpose-built modernization of the education process, education content, as well as learning conditions. Geographic Information Systems (GIS)…
Descriptors: Models, Higher Education, Geographic Information Systems, Environmental Education
Conijn, Rianne; Snijders, Chris; Kleingeld, Ad; Matzat, Uwe – IEEE Transactions on Learning Technologies, 2017
With the adoption of Learning Management Systems (LMSs) in educational institutions, a lot of data has become available describing students' online behavior. Many researchers have used these data to predict student performance. This has led to a rather diverse set of findings, possibly related to the diversity in courses and predictor variables…
Descriptors: Blended Learning, Predictor Variables, Predictive Validity, Predictive Measurement
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Yu, Chong Ho; Digangi, Samuel; Jannasch-Pennell, Angel Kay; Kaprolet, Charles – Online Journal of Distance Learning Administration, 2008
The efficacy of online learning programs is tied to the suitability of the program in relation to the target audience. Based on the dataset that provides information on student enrollment, academic performance, and demographics extracted from a data warehouse of a large Southwest institution, this study explored the factors that could distinguish…
Descriptors: Online Courses, Data Collection, Research Methodology, Profiles
Kommers, Piet, Ed.; Issa, Tomayess, Ed.; Issa, Theodora, Ed.; McKay, Elspeth, Ed.; Isias, Pedro, Ed. – International Association for Development of the Information Society, 2016
These proceedings contain the papers and posters of the International Conferences on Internet Technologies & Society (ITS 2016), Educational Technologies (ICEduTech 2016) and Sustainability, Technology and Education (STE 2016), which have been organised by the International Association for Development of the Information Society and…
Descriptors: Conferences (Gatherings), Foreign Countries, Internet, Educational Technology
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection
International Association for Development of the Information Society, 2012
The IADIS CELDA 2012 Conference intention was to address the main issues concerned with evolving learning processes and supporting pedagogies and applications in the digital age. There had been advances in both cognitive psychology and computing that have affected the educational arena. The convergence of these two disciplines is increasing at a…
Descriptors: Academic Achievement, Academic Persistence, Academic Support Services, Access to Computers