Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 18 |
Since 2016 (last 10 years) | 23 |
Since 2006 (last 20 years) | 23 |
Descriptor
Source
Author
Publication Type
Reports - Research | 15 |
Journal Articles | 13 |
Speeches/Meeting Papers | 7 |
Reports - Descriptive | 3 |
Books | 2 |
Collected Works - Proceedings | 2 |
Reports - Evaluative | 2 |
Collected Works - General | 1 |
Non-Print Media | 1 |
Opinion Papers | 1 |
Education Level
Audience
Location
China | 2 |
Croatia | 1 |
Finland | 1 |
France | 1 |
Germany | 1 |
Greece | 1 |
Iceland | 1 |
Indiana | 1 |
Italy | 1 |
Netherlands | 1 |
Tunisia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
ACT Assessment | 1 |
Big Five Inventory | 1 |
What Works Clearinghouse Rating
Bull, Susan – International Journal of Artificial Intelligence in Education, 2021
For the special issue of the International Journal of Artificial Intelligence in Education dedicated to the memory of Jim Greer, this paper highlights some of Jim's extensive and always-timely contributions to the field: from his early AI-focussed research on intelligent tutoring systems, through a variety of applications deployed to support…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Educational Research, College Students
Jia, Qinjin; Young, Mitchell; Xiao, Yunkai; Cui, Jialin; Liu, Chengyuan; Rashid, Parvez; Gehringer, Edward – Journal of Educational Data Mining, 2022
Instant feedback plays a vital role in promoting academic achievement and student success. In practice, however, delivering timely feedback to students can be challenging for instructors for a variety of reasons (e.g., limited teaching resources). In many cases, feedback arrives too late for learners to act on the advice and reinforce their…
Descriptors: Student Projects, Learning Analytics, Intelligent Tutoring Systems, Feedback (Response)
Wiedbusch, Megan; Lester, James; Azevedo, Roger – Metacognition and Learning, 2023
Pedagogical agents have been designed to support the significant challenges that learners face when self-regulating in advanced learning environments. Evidence suggests differences in learners' prior skills and abilities, in conjunction with excessive didactic support, can cause overreliance on these external aids, which in turn prevents deeper…
Descriptors: Measurement Techniques, Metacognition, Learning Processes, Nonverbal Communication
Xu, Jia; Wei, Tingting; Lv, Pin – International Educational Data Mining Society, 2022
In an Intelligent Tutoring System (ITS), problem (or question) difficulty is one of the most critical parameters, directly impacting problem design, test paper organization, result analysis, and even the fairness guarantee. However, it is very difficult to evaluate the problem difficulty by organized pre-tests or by expertise, because these…
Descriptors: Prediction, Programming, Natural Language Processing, Databases
Wang, Dongqing; Han, Hou – Journal of Computer Assisted Learning, 2021
With the development of a technology-supported environment, it is plausible to provide rich process-oriented feedback in a timely manner. In this paper, we developed a learning analytics dashboard (LAD) based on process-oriented feedback in iTutor to offer learners their final scores, sub-scale reports, and corresponding suggestions on further…
Descriptors: Learning Analytics, Educational Technology, Feedback (Response), Intelligent Tutoring Systems
Frick, Theodore W.; Myers, Rodney D.; Dagli, Cesur – Educational Technology Research and Development, 2022
In this naturalistic design-research study, we tracked 172,417 learning journeys of students who were interacting with an online resource, the Indiana University Plagiarism Tutorials and Tests (IPTAT) at https://plagiarism.iu.edu. IPTAT was designed using First Principles of Instruction (FPI; Merrill in Educ Technol Res Dev 50:43-59, 2002,…
Descriptors: Time, Educational Principles, Instructional Design, Instructional Effectiveness
Silvia García-Méndez; Francisco de Arriba-Pérez; Francisco J. González-Castaño – International Association for Development of the Information Society, 2023
Mobile learning or mLearning has become an essential tool in many fields in this digital era, among the ones educational training deserves special attention, that is, applied to both basic and higher education towards active, flexible, effective high-quality and continuous learning. However, despite the advances in Natural Language Processing…
Descriptors: Higher Education, Artificial Intelligence, Computer Software, Usability
Arnbjörnsdóttir, Birna, Ed.; Bédi, Branislav, Ed.; Bradley, Linda, Ed.; Friðriksdóttir, Kolbrún, Ed.; Garðarsdóttir, Hólmfríður, Ed.; Thouësny, Sylvie, Ed.; Whelpton, Matthew James, Ed. – Research-publishing.net, 2022
The 2022 EUROCALL conference was held in Reykjavik on 17-19 August 2022 as a fully online event hosted by the Vigdís Finnbogadóttir Institute for Foreign Languages, the University of Iceland, and the Árni Magnússon Institute for Icelandic Studies. The conference theme was "Intelligent CALL, granular systems and learner data." This theme…
Descriptors: Learning Analytics, Computer Assisted Instruction, Intelligent Tutoring Systems, Learning Experience
Tempelaar, Dirk – International Association for Development of the Information Society, 2022
E-tutorial learning aids as worked examples and hints have been established as effective instructional formats in problem-solving practices. However, less is known about variations in the use of learning aids across individuals at different stages in their learning process in student-centred learning contexts. This study investigates different…
Descriptors: Learning Analytics, Student Centered Learning, Learning Processes, Student Behavior
Saastamoinen, Kalle; Rissanen, Antti; Mutanen, Arto – International Baltic Symposium on Science and Technology Education, 2023
There were two projects at the National Defence University of Finland (NDU), which both ended by the end of 2022. One of them tried to find the answers to the main question: How artificial intelligence (AI) could be used to improve learning, teaching, and planning? The other tried to find the answer to the main question: What new skills do…
Descriptors: Foreign Countries, Intelligent Tutoring Systems, Teaching Methods, Learning Analytics
Conijn, Rianne; Martinez-Maldonado, Roberto; Knight, Simon; Buckingham Shum, Simon; Van Waes, Luuk; van Zaanen, Menno – Computer Assisted Language Learning, 2022
Current writing support tools tend to focus on assessing final or intermediate products, rather than the writing process. However, sensing technologies, such as keystroke logging, can enable provision of automated feedback during, and on aspects of, the writing process. Despite this potential, little is known about the critical indicators that can…
Descriptors: Automation, Feedback (Response), Writing Evaluation, Learning Analytics
Sense, Florian; van der Velde, Maarten; van Rijn, Hedderik – Journal of Learning Analytics, 2021
Modern educational technology has the potential to support students to use their study time more effectively. Learning analytics can indicate relevant individual differences between learners, which adaptive learning systems can use to tailor the learning experience to individual learners. For fact learning, cognitive models of human memory are…
Descriptors: Predictor Variables, Undergraduate Students, Learning Analytics, Cognitive Psychology
Makhlouf, Jihed; Mine, Tsunenori – Journal of Educational Data Mining, 2020
In recent years, we have seen the continuous and rapid increase of job openings in Science, Technology, Engineering and Math (STEM)-related fields. Unfortunately, these positions are not met with an equal number of workers ready to fill them. Efforts are being made to find durable solutions for this phenomena, and they start by encouraging young…
Descriptors: Learning Analytics, STEM Education, Science Careers, Career Choice
Šaric-Grgic, Ines; Grubišic, Ani; Šeric, Ljiljana; Robinson, Timothy J. – International Journal of Distance Education Technologies, 2020
The idea of clustering students according to their online learning behavior has the potential of providing more adaptive scaffolding by the intelligent tutoring system itself or by a human teacher. With the aim of identifying student groups who would benefit from the same intervention in AC-ware Tutor, this research examined online learning…
Descriptors: Learning Analytics, Intelligent Tutoring Systems, Grouping (Instructional Purposes), Undergraduate Students
Mao, Ye; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2020
Modeling student learning processes is highly complex since it is influenced by many factors such as motivation and learning habits. The high volume of features and tools provided by computer-based learning environments confounds the task of tracking student knowledge even further. Deep Learning models such as Long-Short Term Memory (LSTMs) and…
Descriptors: Time, Models, Artificial Intelligence, Bayesian Statistics
Previous Page | Next Page »
Pages: 1 | 2