NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ural, Alattin – Journal of Educational Issues, 2020
The purpose of this research is to classify the mathematical modelling problems produced by pre-service mathematics teachers in terms of the number of variables and to determine the mathematical modelling skills and mathematical skills used in solving the problems in each class. The current study is a qualitative research and the data was analyzed…
Descriptors: Classification, Mathematical Models, Mathematics Teachers, Preservice Teachers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matayoshi, Jeffrey; Uzun, Hasan; Cosyn, Eric – International Educational Data Mining Society, 2022
Knowledge space theory (KST) is a mathematical framework for modeling and assessing student knowledge. While KST has successfully served as the foundation of several learning systems, recent advancements in machine learning provide an opportunity to improve on purely KST-based approaches to assessing student knowledge. As such, in this work we…
Descriptors: Knowledge Level, Mathematical Models, Learning Experience, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gruver, Nate; Malik, Ali; Capoor, Brahm; Piech, Chris; Stevens, Mitchell L.; Paepcke, Andreas – International Educational Data Mining Society, 2019
Understanding large-scale patterns in student course enrollment is a problem of great interest to university administrators and educational researchers. Yet important decisions are often made without a good quantitative framework of the process underlying student choices. We propose a probabilistic approach to modelling course enrollment…
Descriptors: Models, Course Selection (Students), Enrollment, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
dos Santos, Regina Antunes Teixeira; Gerling, Cristina Capparelli; de Bortoli, Álvaro Luiz – Music Education Research, 2017
A short piano piece was prepared by undergraduate and graduate piano students (N = 15) without guidance from their piano teachers. Temporal parameters were analyzed in several time frames, from a phrase-to-phrase level to an interonset interval. At a macro level, local tempo was shown to be a crucial parameter that divided the students into two…
Descriptors: Undergraduate Students, Musical Instruments, Music Education, Graduate Students
Cousino, Andrew – ProQuest LLC, 2013
The goal of this work is to provide instructors with detailed information about their classes at each assignment during the term. The information is both on an individual level and at the aggregate level. We used the large number of grades, which are available online these days, along with data-mining techniques to build our models. This enabled…
Descriptors: Mathematics Instruction, Algebra, Probability, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Little, Daniel R.; Nosofsky, Robert M.; Denton, Stephen E. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2011
A recent resurgence in logical-rule theories of categorization has motivated the development of a class of models that predict not only choice probabilities but also categorization response times (RTs; Fific, Little, & Nosofsky, 2010). The new models combine mental-architecture and random-walk approaches within an integrated framework and…
Descriptors: Classification, Reaction Time, Stimuli, College Students
International Association for Development of the Information Society, 2012
The IADIS CELDA 2012 Conference intention was to address the main issues concerned with evolving learning processes and supporting pedagogies and applications in the digital age. There had been advances in both cognitive psychology and computing that have affected the educational arena. The convergence of these two disciplines is increasing at a…
Descriptors: Academic Achievement, Academic Persistence, Academic Support Services, Access to Computers