Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 8 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 18 |
Descriptor
Source
Chemical Engineering Education | 18 |
Author
Publication Type
Journal Articles | 18 |
Reports - Research | 9 |
Reports - Descriptive | 7 |
Reports - Evaluative | 2 |
Education Level
Higher Education | 18 |
Postsecondary Education | 18 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Courtney A. Pfluger; Jennifer R. Weiser; Kristine Horvat – Chemical Engineering Education, 2024
As understanding of STEM education pedagogy deepens, traditional lecture-based courses evolve to include new philosophies, such as active learning, project-based learning, and inquiry-based learning (IBL). Additionally, hands-on educational experiences at the early stages of an undergraduate program are seminal in propelling students into the…
Descriptors: Experiential Learning, Active Learning, Inquiry, Teaching Methods
Mingheng Li – Chemical Engineering Education, 2024
Project-based learning (PBL) empowers students to become active learners. In this work computational reverse osmosis (RO) projects developed from industrial case studies and research were implemented in several chemical engineering courses to enhance student learning experience. Students not only gained knowledge in water treatment, but also…
Descriptors: Chemical Engineering, Engineering Education, Learning Experience, Student Projects
Asogwa, Uchenna; Duckett, T. Ryan; Mentzer, Gale A.; Liberatore, Matthew W. – Chemical Engineering Education, 2021
The impact of solving novel video-inspired homework problems on learning attitudes toward chemical engineering was examined at beginning and end of an undergraduate material and energy balances course using a modified Colorado Learning Attitudes about Science Survey instrument. Mean overall attitude of participants improved by a normalized gain…
Descriptors: Homework, Student Attitudes, Video Technology, Problem Solving
Elkhatat, Ahmed M.; Al-Muhtaseb, Shaheen A. – Chemical Engineering Education, 2022
A Computer-Aided Learning Package as Inquiry-Guided Learning (CALP/IGL) was implemented in a cooling tower experiment for 43 students enrolled in four sections of the Unit Operations Laboratory course in the chemical engineering program at Qatar University. The impact of this approach on the attainment of learning outcomes was evaluated. Results…
Descriptors: Inquiry, Active Learning, Engineering Education, Computer Assisted Instruction
Nagma Zerin – Chemical Engineering Education, 2024
Project-Enhanced learning is an excellent way to facilitate student-centered learning along with traditional lecture-based learning. In this Class and Home problem, an example of Project-Enhanced learning is provided that can be used in the Mass and Energy Balances (MEB) course. The students solve this problem as part of a group while receiving…
Descriptors: Student Projects, Active Learning, Student Centered Learning, Teaching Methods
Hansen, Ryan R.; Anderson, Audrey C.; Barua, Niloy; McGinley, Logan M. – Chemical Engineering Education, 2021
This report evaluates the use of active, open-ended research problems taken from the instructor's laboratory and assigned as mid-semester projects in Transport Phenomena. Projects are structured in a POGIL [process oriented guided inquiry learning] format and designed to engage students by providing them the opportunity to impact real research…
Descriptors: Teaching Methods, Laboratories, Motion, Energy
Carlos J. Landaverde-Alvarado – Chemical Engineering Education, 2024
We redesigned our undergraduate laboratories to create a structured sequence that continuously improves the learning experience of students. We utilized a PBL and PjBL approach in which students are progressively introduced to ill-structured open-ended problems, the development of projects, and the creation of research products. We dynamically…
Descriptors: Student Projects, Active Learning, Problem Based Learning, Undergraduate Students
Lewin, Daniel Roberto; Barzilai, Abigail – Chemical Engineering Education, 2021
The capstone design sequence provides chemical engineering students with the opportunity to demonstrate mastery in process engineering, acquired during their entire degree, and is the ultimate "reality check" in outcome verification. This paper describes the current status of the design sequence followed by chemical engineering students…
Descriptors: Capstone Experiences, Flipped Classroom, Chemical Engineering, Engineering Education
Nottis, Katharyn E. K.; Vigeant, Margot A.; Prince, Michael J.; Golightly, Amy Frances; Gadoury, Carrine Megan – Chemical Engineering Education, 2019
Heat and temperature concepts are found at all levels in the science curricula and are well-known for creating conceptual difficulties for learners. Students have difficulty understanding concepts related to heat, temperature, and thermal radiation. Inquiry-based pedagogies that can foster the learning of these difficult concepts are needed.…
Descriptors: Computer Simulation, Science Experiments, Heat, Active Learning
Hirshfield, Laura J.; Mayes, Heather B. – Chemical Engineering Education, 2019
With the advance of engineering education research and scholarship, there has been an increased focus on amending chemical engineering courses to increase student learning, engagement and enjoyment. These approaches are often incorporated in project-based courses such as capstone design courses and laboratory courses, providing opportunities to…
Descriptors: Undergraduate Students, Chemical Engineering, Engineering Education, Inclusion
Hempel, Byron R.; Kiehlbugh, Kasi; Blowers, Paul – Chemical Engineering Education, 2019
A sophomore core chemical engineering course was co-taught by two different 4 instructors in Spring 2016 and Spring 2017 with approximately 90 students both semesters via an 5 active learning environment in a collaborative learning space. Both instructors were present for 6 almost all lectures and each instructor delivered approximately 50% of the…
Descriptors: Gender Differences, Active Learning, Science Instruction, Chemical Engineering
Utgikar, Vivek P. – Chemical Engineering Education, 2015
An experiment based on the sublimation of a solid was introduced in the undergraduate Transport Phenomena course. The experiment required the students to devise their own apparatus and measurement techniques. The theoretical basis, assignment of the experiment, experimental results, and student/instructor observations are described in this paper.…
Descriptors: Undergraduate Students, Laboratory Experiments, Active Learning, Scientific Concepts
Wen, Fei; Khera, Eshita – Chemical Engineering Education, 2016
Despite the instinctive perception of mass and heat transfer principles in daily life, productive learning in this course continues to be one of the greatest challenges for undergraduate students in chemical engineering. In an effort to enhance student learning in classroom, we initiated an innovative active-learning method titled…
Descriptors: Active Learning, Heat, Thermodynamics, Student Developed Materials
Liberatore, Matthew W. – Chemical Engineering Education, 2013
The delivery of a material and energy balances course is enhanced through a series of in-class and out-of-class exercises. An active learning classroom is achieved, even at class sizes over 150 students, using multiple instructors in a single classroom, problem solving in teams, problems based on YouTube videos, and just-in-time teaching. To avoid…
Descriptors: Active Learning, Energy, Team Teaching, Teaching Methods
Heath, Daniel E.; Hoy, Mary; Rathman, James F.; Rohdieck, Stephanie – Chemical Engineering Education, 2013
The Chemical and Biomolecular Engineering Department at The Ohio State University in collaboration with the University Center for the Advancement of Teaching developed the Chemical Engineering Mentored Teaching Experience. The Mentored Teaching Experience is an elective for Ph.D. students interested in pursuing faculty careers. Participants are…
Descriptors: Chemical Engineering, Technical Occupations, Teaching Experience, Mentors
Previous Page | Next Page ยป
Pages: 1 | 2