Publication Date
In 2025 | 1 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 11 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 15 |
Descriptor
Learning Analytics | 15 |
Models | 15 |
Middle School Students | 10 |
Learning Processes | 8 |
Prediction | 8 |
Mathematics Instruction | 6 |
Comparative Analysis | 5 |
Grade 8 | 5 |
Mathematics Tests | 5 |
Teaching Methods | 5 |
Algorithms | 4 |
More ▼ |
Source
Author
Baker, Ryan S. | 4 |
Amisha Jindal | 3 |
Ashish Gurung | 3 |
Erin Ottmar | 3 |
Ji-Eun Lee | 3 |
Reilly Norum | 3 |
Sanika Nitin Patki | 3 |
Andres, Juliana Ma. Alexandra… | 2 |
Brooks, Jamiella | 2 |
Gobert, Janice | 2 |
Hiroaki Ogata | 2 |
More ▼ |
Publication Type
Reports - Research | 15 |
Journal Articles | 10 |
Speeches/Meeting Papers | 3 |
Education Level
Junior High Schools | 15 |
Middle Schools | 15 |
Secondary Education | 15 |
Elementary Education | 6 |
Grade 8 | 5 |
Intermediate Grades | 2 |
Elementary Secondary Education | 1 |
Grade 4 | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Grade 9 | 1 |
More ▼ |
Audience
Location
Japan | 2 |
Massachusetts | 2 |
Texas | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Motivated Strategies for… | 1 |
National Assessment of… | 1 |
Patterns of Adaptive Learning… | 1 |
What Works Clearinghouse Rating
Chia-Yu Hsu; Izumi Horikoshi; Rwitajit Majumdar; Hiroaki Ogata – Educational Technology & Society, 2024
This study focuses on the problem that the process of building learning habits has not been clearly described. Therefore, we aim to extract the stages of learning habits from log data. We propose a data model to extract stages of learning habits based on the transtheoretical model and apply the model to the learning logs of self-directed extensive…
Descriptors: Habit Formation, Behavior Change, Learning Analytics, Data Interpretation
Hai Li; Wanli Xing; Chenglu Li; Wangda Zhu; Simon Woodhead – Journal of Learning Analytics, 2025
Knowledge tracing (KT) is a method to evaluate a student's knowledge state (KS) based on their historical problem-solving records by predicting the next answer's binary correctness. Although widely applied to closed-ended questions, it lacks a detailed option tracing (OT) method for assessing multiple-choice questions (MCQs). This paper introduces…
Descriptors: Mathematics Tests, Multiple Choice Tests, Computer Assisted Testing, Problem Solving
Emily K. Toutkoushian; Kihyun Ryoo – Measurement: Interdisciplinary Research and Perspectives, 2024
The Next Generation Science Standards (NGSS) delineate three interrelated dimensions that describe what students should know and how they should engage in science learning. These present significant challenges for assessment because traditional assessments may not be able to capture the ways in which students engage with content. Science…
Descriptors: Middle School Students, Academic Standards, Science Education, Learner Engagement
Rwitajit Majumdar; Huiyong Li; Yuanyuan Yang; Hiroaki Ogata – Educational Technology & Society, 2024
Self-direction skill (SDS) is an essential 21st-century skill that can help learners be independent and organized in their quest for knowledge acquisition. While some studies considered learners from higher education levels as the target audience, providing opportunities to start the SDS practice by K12 learners is still rare. Further, practicing…
Descriptors: 21st Century Skills, Skill Development, Electronic Learning, Physical Activity Level
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Zhang, Jiayi; Andres, Juliana Ma. Alexandra L.; Hutt, Stephen; Baker, Ryan S.; Ocumpaugh, Jaclyn; Mills, Caitlin; Brooks, Jamiella; Sethuraman, Sheela; Young, Tyron – International Educational Data Mining Society, 2022
Self-regulated learning (SRL) is a critical component of mathematics problem solving. Students skilled in SRL are more likely to effectively set goals, search for information, and direct their attention and cognitive process so that they align their efforts with their objectives. An influential framework for SRL, the SMART model, proposes that…
Descriptors: Mathematics Instruction, Teaching Methods, Problem Solving, Metacognition
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Levin, Nathan A. – Journal of Educational Data Mining, 2021
The Big Data for Education Spoke of the NSF Northeast Big Data Innovation Hub and ETS co-sponsored an educational data mining competition in which contestants were asked to predict efficient time use on the NAEP 8th grade mathematics computer-based assessment, based on the log file of a student's actions on a prior portion of the assessment. In…
Descriptors: Learning Analytics, Data Collection, Competition, Prediction
Zhang, Jiayi; Andres, Juliana Ma. Alexandra L.; Hutt, Stephen; Baker, Ryan S.; Ocumpaugh, Jaclyn; Nasiar, Nidhi; Mills, Caitlin; Brooks, Jamiella; Sethuaman, Sheela; Young, Tyron – Journal of Educational Data Mining, 2022
Self-regulated learning (SRL) is a critical component of mathematics problem-solving. Students skilled in SRL are more likely to effectively set goals, search for information, and direct their attention and cognitive process so that they align their efforts with their objectives. An influential framework for SRL, the SMART model (Winne, 2017),…
Descriptors: Problem Solving, Mathematics Instruction, Learning Management Systems, Learning Analytics
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Baker, Ryan S.; Berning, Andrew W.; Gowda, Sujith M.; Zhang, Shizhu; Hawn, Aaron – Journal of Education for Students Placed at Risk, 2020
Dropout remains a persistent challenge within high school education. In this paper, we present a case study on automatically detecting whether a student is at-risk of dropout within a diverse school district in Texas. We predict whether a student will drop out in a future school year from data on students' discipline, attendance, course-taking,…
Descriptors: At Risk Students, High School Students, Dropout Prevention, Student Diversity
Botelho, Anthony F.; Varatharaj, Ashvini; Patikorn, Thanaporn; Doherty, Diana; Adjei, Seth A.; Beck, Joseph E. – IEEE Transactions on Learning Technologies, 2019
The increased usage of computer-based learning platforms and online tools in classrooms presents new opportunities to not only study the underlying constructs involved in the learning process, but also use this information to identify and aid struggling students. Many learning platforms, particularly those driving or supplementing instruction, are…
Descriptors: Student Attrition, Student Behavior, Early Intervention, Identification
Sao Pedro, Michael; Jiang, Yang; Paquette, Luc; Baker, Ryan S.; Gobert, Janice – Grantee Submission, 2014
Students conducted inquiry using simulations within a rich learning environment for 4 science topics. By applying educational data mining to students' log data, assessment metrics were generated for two key inquiry skills, testing stated hypotheses and designing controlled experiments. Three models were then developed to analyze the transfer of…
Descriptors: Simulation, Transfer of Training, Bayesian Statistics, Inquiry
Hershkovitz, Arnon; Baker, Ryan S. J. d.; Gobert, Janice; Wixon, Michael; Sao Pedro, Michael – Grantee Submission, 2013
In recent years, an increasing number of analyses in Learning Analytics and Educational Data Mining (EDM) have adopted a "Discovery with Models" approach, where an existing model is used as a key component in a new EDM/analytics analysis. This article presents a theoretical discussion on the emergence of discovery with models, its…
Descriptors: Learning Analytics, Models, Learning Processes, Case Studies