NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hanife Merve Erdogan; Nazan Sezen Yüksel – Acta Didactica Napocensia, 2023
The aim of this study is to classify the subjects and skills of middle school mathematics course in the context of MATH Taxonomy and to determine their relations. For this purpose, the questions and answers related to the mathematics subtest of a national exam were analyzed over the answers of 20154 students. The study continued with the analysis…
Descriptors: Mathematics Skills, Taxonomy, Computer Software, Probability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hai Li; Wanli Xing; Chenglu Li; Wangda Zhu; Simon Woodhead – Journal of Learning Analytics, 2025
Knowledge tracing (KT) is a method to evaluate a student's knowledge state (KS) based on their historical problem-solving records by predicting the next answer's binary correctness. Although widely applied to closed-ended questions, it lacks a detailed option tracing (OT) method for assessing multiple-choice questions (MCQs). This paper introduces…
Descriptors: Mathematics Tests, Multiple Choice Tests, Computer Assisted Testing, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Owen Henkel; Hannah Horne-Robinson; Maria Dyshel; Greg Thompson; Ralph Abboud; Nabil Al Nahin Ch; Baptiste Moreau-Pernet; Kirk Vanacore – Journal of Learning Analytics, 2025
This paper introduces AMMORE, a new dataset of 53,000 math open-response question-answer pairs from Rori, a mathematics learning platform used by middle and high school students in several African countries. Using this dataset, we conducted two experiments to evaluate the use of large language models (LLM) for grading particularly challenging…
Descriptors: Learning Analytics, Learning Management Systems, Mathematics Instruction, Middle School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Burhan Ogut; Blue Webb; Juanita Hicks; Ruhan Circi; Michelle Yin – Grantee Submission, 2024
In this study, we explore the application of process mining techniques on assessment log data to explore problem-solving strategies in Algebra. By analyzing sequences of student activities, we demonstrate the significant potential of process mining in identifying problem-solving strategies that lead to successful and unsuccessful outcomes. Our…
Descriptors: Mathematics Skills, Problem Solving, Learning Analytics, Algebra
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Congning Ni; Bhashithe Abeysinghe; Juanita Hicks – International Electronic Journal of Elementary Education, 2025
The National Assessment of Educational Progress (NAEP), often referred to as The Nation's Report Card, offers a window into the state of U.S. K-12 education system. Since 2017, NAEP has transitioned to digital assessments, opening new research opportunities that were previously impossible. Process data tracks students' interactions with the…
Descriptors: Reaction Time, Multiple Choice Tests, Behavior Change, National Competency Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Yang; Gong, Tao; Saldivia, Luis E.; Cayton-Hodges, Gabrielle; Agard, Christopher – Large-scale Assessments in Education, 2021
In 2017, the mathematics assessments that are part of the National Assessment of Educational Progress (NAEP) program underwent a transformation shifting the administration from paper-and-pencil formats to digitally-based assessments (DBA). This shift introduced new interactive item types that bring rich process data and tremendous opportunities to…
Descriptors: Data Use, Learning Analytics, Test Items, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
Direct linkDirect link
Kam Hong Shum; Samuel Kai Wah Chu; Cheuk Yu Yeung – Interactive Learning Environments, 2023
This study examines the use of data analytics to evaluate students' behaviours during their participation in an online collaborative learning environment called SkyApp. To visualise the learning traits of engagement, emotion and motivation, students' inputs and activity data were captured and quantified for analysis. Experiments were first carried…
Descriptors: Student Behavior, Online Courses, Cooperative Learning, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Ji-Eun; Chan, Jenny Yun-Chen; Botelho, Anthony; Ottmar, Erin – Educational Technology Research and Development, 2022
Online educational games have been widely used to support students' mathematics learning. However, their effects largely depend on student-related factors, the most prominent being their behavioral characteristics as they play the games. In this study, we applied a set of learning analytics methods (k-means clustering, data visualization) to…
Descriptors: Computer Games, Educational Games, Mathematics Instruction, Learning Processes
Lee, Ji-Eun; Chan, Jenny Yun-Chen; Botelho, Anthony; Ottmar, Erin – Grantee Submission, 2022
Online educational games have been widely used to support students' mathematics learning. However, their effects largely depend on student-related factors, the most prominent being their behavioral characteristics as they play the games. In this study, we applied a set of learning analytics methods ("k"-means clustering, data…
Descriptors: Computer Games, Educational Games, Mathematics Instruction, Learning Processes
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cook, Michael; Ross, Steven M. – Center for Research and Reform in Education, 2022
The purpose of this evaluation was to examine the impact of i-Ready Personalized Instruction that met Curriculum Associates' recommended usage levels on mathematics achievement, as measured by the Massachusetts Comprehensive Assessment System (MCAS) mathematics assessment. This study compared mathematics achievement growth of students who used…
Descriptors: Mathematics Achievement, Mathematics Instruction, Program Evaluation, Individualized Instruction
Weeks, Jonathan; Baron, Patricia – Educational Testing Service, 2021
The current project, Exploring Math Education Relations by Analyzing Large Data Sets (EMERALDS) II, is an attempt to identify specific Common Core State Standards procedural, conceptual, and problem-solving competencies in earlier grades that best predict success in algebraic areas in later grades. The data for this study include two cohorts of…
Descriptors: Mathematics Education, Common Core State Standards, Problem Solving, Mathematics Tests
Previous Page | Next Page »
Pages: 1  |  2