NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Patterns of Adaptive Learning…1
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Nicole M. Hutchins; Gautam Biswas – British Journal of Educational Technology, 2024
This paper provides an experience report on a co-design approach with teachers to co-create learning analytics-based technology to support problem-based learning in middle school science classrooms. We have mapped out a workflow for such applications and developed design narratives to investigate the implementation, modifications and temporal…
Descriptors: Problem Based Learning, Teaching Methods, Science Instruction, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Chia-Yu Hsu; Izumi Horikoshi; Rwitajit Majumdar; Hiroaki Ogata – Educational Technology & Society, 2024
This study focuses on the problem that the process of building learning habits has not been clearly described. Therefore, we aim to extract the stages of learning habits from log data. We propose a data model to extract stages of learning habits based on the transtheoretical model and apply the model to the learning logs of self-directed extensive…
Descriptors: Habit Formation, Behavior Change, Learning Analytics, Data Interpretation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hai Li; Wanli Xing; Chenglu Li; Wangda Zhu; Simon Woodhead – Journal of Learning Analytics, 2025
Knowledge tracing (KT) is a method to evaluate a student's knowledge state (KS) based on their historical problem-solving records by predicting the next answer's binary correctness. Although widely applied to closed-ended questions, it lacks a detailed option tracing (OT) method for assessing multiple-choice questions (MCQs). This paper introduces…
Descriptors: Mathematics Tests, Multiple Choice Tests, Computer Assisted Testing, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Min; Cai, Ying; Han, Songhee; Shao, Peixia – Journal of Learning Analytics, 2022
Research on learning analytics (LA) has focused mostly at the university level. LA research in the K-12 setting is needed. This study aimed to understand 4,115 middle school students' learning paths based on their behavioural patterns and the relationship with performance levels when they used a digital learning game as their science curriculum.…
Descriptors: Learning Analytics, Navigation, Game Based Learning, Middle School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Emily K. Toutkoushian; Kihyun Ryoo – Measurement: Interdisciplinary Research and Perspectives, 2024
The Next Generation Science Standards (NGSS) delineate three interrelated dimensions that describe what students should know and how they should engage in science learning. These present significant challenges for assessment because traditional assessments may not be able to capture the ways in which students engage with content. Science…
Descriptors: Middle School Students, Academic Standards, Science Education, Learner Engagement
Peer reviewed Peer reviewed
Direct linkDirect link
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Min; Li, Chenglu; Pan, Zilong; Pan, Xin – Interactive Learning Environments, 2023
More research is needed on how to best use analytics to support educational decisions and design effective learning environments. This study was to explore and mine the data captured by a digital educational game designed for middle school science to understand learners' behavioral patterns in using the game, and to use evidence-based findings to…
Descriptors: Computer Games, Educational Games, Instructional Design, Instructional Effectiveness
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Ji-Eun; Chan, Jenny Yun-Chen; Botelho, Anthony; Ottmar, Erin – Educational Technology Research and Development, 2022
Online educational games have been widely used to support students' mathematics learning. However, their effects largely depend on student-related factors, the most prominent being their behavioral characteristics as they play the games. In this study, we applied a set of learning analytics methods (k-means clustering, data visualization) to…
Descriptors: Computer Games, Educational Games, Mathematics Instruction, Learning Processes
Lee, Ji-Eun; Chan, Jenny Yun-Chen; Botelho, Anthony; Ottmar, Erin – Grantee Submission, 2022
Online educational games have been widely used to support students' mathematics learning. However, their effects largely depend on student-related factors, the most prominent being their behavioral characteristics as they play the games. In this study, we applied a set of learning analytics methods ("k"-means clustering, data…
Descriptors: Computer Games, Educational Games, Mathematics Instruction, Learning Processes
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
Direct linkDirect link
Andy Ding-Xuan Ng; Aloysius Ong; Alwyn Vwen Yen Lee; Chew Lee Teo – Pedagogies: An International Journal, 2024
Research and development of Learning Analytics (LA) have created new ways to support students' learning. However, our understanding of teachers' roles when implementing LA in classroom practices remains nascent. This study investigates how teachers can implement LA to support students' agency in directing their own inquiry, when engaging in a…
Descriptors: Learning Analytics, Grade 5, Elementary School Students, Grade 6
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
Direct linkDirect link
Poole, Frederick J.; Clarke-Midura, Jody – Language Learning & Technology, 2023
Research involving digital games and language learning is rapidly growing. One advantage of using digital games to support language learning is the ability to collect data on students learning in real time. In this study, we use educational data mining methods to explore the relationship between in-game data and elementary students' Chinese…
Descriptors: Computer Games, Second Language Learning, Second Language Instruction, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Tärning, Betty; Lee, Yeon Joo; Andersson, Richard; Månsson, Kristian; Gulz, Agneta; Haake, Magnus – Journal of the Learning Sciences, 2020
Background: Previous research shows that critical constructive feedback, that scaffolds students to improve on tasks, often remains untapped. The paper's aim is to illuminate at what stages students provided with such feedback drop out of feedback processing. Methods: In our model, students can drop out at any of five stages of feedback…
Descriptors: Feedback (Response), Computer Games, Educational Games, Elementary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Saito, Daisuke; Kaieda, Shota; Washizaki, Hironori; Fukazawa, Yoshiaki – Journal of Information Technology Education: Innovations in Practice, 2020
Aim/Purpose: Although many computer science measures have been proposed, visualizing individual students' capabilities is difficult, as those measures often rely on specific tools and methods or are not graded. To solve these problems, we propose a rubric for measuring and visualizing the effects of learning computer programming for elementary…
Descriptors: Scoring Rubrics, Visualization, Learning Analytics, Computer Science Education
Previous Page | Next Page »
Pages: 1  |  2