NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 227 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Chih-Yueh Chou; Wei-Han Chen – Educational Technology & Society, 2025
Studies have shown that students have different help-seeking behavior patterns and tendencies and furthermore, that students with certain help-seeking behavior patterns and tendencies may have poor performance (i.e., at-risk students). This study applied an educational data mining approach, including clustering and classification, to analyze…
Descriptors: Student Behavior, Help Seeking, Problem Solving, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Jaewon Jung; Yoonhee Shin; HaeJin Chung; Mik Fanguy – Journal of Computing in Higher Education, 2025
This study investigated the effects of pre-training types on cognitive load, self-efficacy, and problem-solving in computer programming. Pre-training was provided to help learners acquire schemas related to problem-solving strategies. 84 undergraduate students were randomly assigned to one of three groups and each group received three different…
Descriptors: Training, Cognitive Processes, Difficulty Level, Self Efficacy
Peer reviewed Peer reviewed
Direct linkDirect link
Marcella Mandanici; Simone Spagnol – IEEE Transactions on Education, 2024
The purpose of this study is to look at how a music programming course affects the development of computational thinking in undergraduate music conservatory students. In addition to teaching the fundamentals of computational thinking, music programming, and logic, the course addresses the Four C's of education. The change in students' attitudes…
Descriptors: Music Education, Undergraduate Students, Programming, Computer Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Eunsung Park; Jongpil Cheon – Journal of Educational Computing Research, 2025
Debugging is essential for identifying and rectifying errors in programming, yet time constraints and students' trivialization of errors often hinder progress. This study examines differences in debugging challenges and strategies among students with varying computational thinking (CT) competencies using weekly coding journals from an online…
Descriptors: Undergraduate Students, Programming, Computer Software, Troubleshooting
Peer reviewed Peer reviewed
Direct linkDirect link
Selin Urhan; Selay Arkün Kocadere – Educational Technology & Society, 2024
This study investigated the effect of video lecture types on the performance of students in computational problem-solving practices. A total of 19 university students participated in the computational problem-solving practices that mostly required declarative knowledge, and 22 university students participated in the computational problem-solving…
Descriptors: Video Technology, Lecture Method, Problem Solving, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Diamond, Harvey – PRIMUS, 2023
This paper presents a series of basic computational problems that are mathematically and/or graphically appealing, and provides an idea of places one might go in trying to understand what is happening, integrating mathematics, computation, and graphics. The real point of this paper is to make a case, through those examples, for computation as an…
Descriptors: Mathematics Instruction, Computation, College Mathematics, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Qiang; Liu, Ze-xue; Wang, Peng; Wang, Jing-jing; Luo, Tian – Education and Information Technologies, 2023
Computational thinking (CT) and design thinking (DT) are critical tools for students to improve their problem-solving abilities. CT is most commonly used in science and technology fields such as computer science and mathematics, whereas DT is more commonly used in the design field. This study evaluates the impact of art programming education on…
Descriptors: College Students, Art Education, Design, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Dan Sun; Fan Xu – Journal of Educational Computing Research, 2025
Real-time collaborative programming (RCP), which allows multiple programmers to work concurrently on the same codebase with changes instantly visible to all participants, has garnered considerable popularity in higher education. Despite this trend, little work has rigorously examined how undergraduates engage in collaborative programming when…
Descriptors: Cooperative Learning, Programming, Computer Science Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Michael E. Ellis; K. Mike Casey; Geoffrey Hill – Decision Sciences Journal of Innovative Education, 2024
Large Language Model (LLM) artificial intelligence tools present a unique challenge for educators who teach programming languages. While LLMs like ChatGPT have been well documented for their ability to complete exams and create prose, there is a noticeable lack of research into their ability to solve problems using high-level programming…
Descriptors: Artificial Intelligence, Programming Languages, Programming, Homework
Peer reviewed Peer reviewed
Direct linkDirect link
Sigal Levy; Yelena Stukalin; Nili Guttmann-Beck – Teaching Statistics: An International Journal for Teachers, 2024
Probability theory has extensive applications across various domains, such as statistics, computer science, and finance. In probability education, students are introduced to fundamental principles which may include mathematical topics such as combinatorics and symmetric sample spaces. Students pursuing degrees in computer science possess a robust…
Descriptors: Programming, Probability, Mathematics Skills, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hansen, Nils Kristian; Hadjerrouit, Said – International Association for Development of the Information Society, 2023
This paper aims at using a Use-Modify-Create approach to explore students' mathematical problem solving by means of computational thinking (CT) and programming activities. The data collection method is participant observation, in which the researcher also has the role as teacher, guiding the group activities. In our study, two groups of students…
Descriptors: Problem Solving, Computation, Thinking Skills, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ernst Bekkering; Patrick Harrington – Information Systems Education Journal, 2025
Generative AI has recently gained the ability to generate computer code. This development is bound to affect how computer programming is taught in higher education. We used past programming assignments and solutions for textbook exercises in our introductory programming class to analyze how accurately one of the leading models, ChatGPT, generates…
Descriptors: Higher Education, Artificial Intelligence, Programming, Textbook Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Ting-Ting Wu; Hsin-Yu Lee; Pei-Hua Chen; Wei-Sheng Wang; Yueh-Min Huang – Journal of Computer Assisted Learning, 2025
Background: Conventional reflective learning methodologies in programming education often lack structured guidance and individualised feedback, limiting their pedagogical effectiveness. Whilst computational thinking (CT) offers a systematic problem-solving framework with decomposition, pattern recognition, abstraction, and algorithm design, its…
Descriptors: Computation, Thinking Skills, Educational Diagnosis, Diagnostic Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Zachary M. Savelson; Kasia Muldner – Computer Science Education, 2024
Background and Context: Productive failure (PF) is a learning paradigm that flips the order of instruction: students work on a problem, then receive a lesson. PF increases learning, but less is known about student emotions and collaboration during PF, particularly in a computer science context. Objective: To provide insight on students' emotions…
Descriptors: Student Attitudes, Psychological Patterns, Fear, Failure
Peer reviewed Peer reviewed
Direct linkDirect link
Zhou, Ying; Chai, Ching Sing; Li, Xiuting; Ma, Chao; Li, Baoping; Yu, Ding; Liang, Jyh-Chong – Journal of Educational Computing Research, 2023
Computational thinking is a way of thinking that helps people "think like a computer scientist" to solve practical problems. However, practicing computational thinking through programming is dependent on the problem solvers' metacognition. This study investigated students' metacognitive planning and problem-solving performance in…
Descriptors: Metacognition, Computation, Thinking Skills, Problem Solving
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  16