Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 12 |
| Since 2007 (last 20 years) | 23 |
Descriptor
Source
Author
| Abu Saa, Amjed | 1 |
| Agasisti, Tommaso | 1 |
| Al-Emran, Mostafa | 1 |
| Almeida, Leandro S. | 1 |
| Bailey, Brenda L. | 1 |
| Barnes, Tiffany | 1 |
| Barre, V. | 1 |
| Benjamin L. Castleman | 1 |
| Berrocal-Lobo, Marta | 1 |
| Blikstein, Paulo | 1 |
| Cannistrà, Marta | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 23 |
| Reports - Research | 18 |
| Reports - Evaluative | 4 |
| Reports - Descriptive | 3 |
| Dissertations/Theses -… | 1 |
| Information Analyses | 1 |
| Numerical/Quantitative Data | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
| Higher Education | 26 |
| Postsecondary Education | 18 |
| Two Year Colleges | 4 |
| Elementary Secondary Education | 1 |
Audience
Location
| Arizona | 1 |
| China | 1 |
| France | 1 |
| Indiana | 1 |
| Italy | 1 |
| Maryland | 1 |
| Minnesota | 1 |
| Netherlands | 1 |
| North Carolina | 1 |
| Portugal | 1 |
| Singapore | 1 |
| More ▼ | |
Laws, Policies, & Programs
| Higher Education Act Title IV | 1 |
Assessments and Surveys
| ACT Assessment | 1 |
What Works Clearinghouse Rating
McCarthy, Richard V.; Ceccucci, Wendy; McCarthy, Mary; Sugurmar, Nirmalkumar – Information Systems Education Journal, 2021
This case is designed to be used in business analytics courses; particularly those that emphasize predictive analytics. Students are given background information on money laundering and data from People's United Bank, a regional bank in the northeast United States. The students must develop their hypothesis, analyze the data, develop and optimize…
Descriptors: Business Administration Education, Data Analysis, Prediction, Crime
Naseem, Mohammed; Chaudhary, Kaylash; Sharma, Bibhya – Education and Information Technologies, 2022
The need for a knowledge-based society has perpetuated an increasing demand for higher education around the globe. Recently, there has been an increase in the demand for Computer Science professionals due to the rise in the use of ICT in the business, health and education sector. The enrollment numbers in Computer Science undergraduate programmes…
Descriptors: College Freshmen, Student Attrition, School Holding Power, Dropout Prevention
Abu Saa, Amjed; Al-Emran, Mostafa; Shaalan, Khaled – Technology, Knowledge and Learning, 2019
Predicting the students' performance has become a challenging task due to the increasing amount of data in educational systems. In keeping with this, identifying the factors affecting the students' performance in higher education, especially by using predictive data mining techniques, is still in short supply. This field of research is usually…
Descriptors: Performance Factors, Data Analysis, Higher Education, Academic Achievement
Cannistrà, Marta; Masci, Chiara; Ieva, Francesca; Agasisti, Tommaso; Paganoni, Anna Maria – Studies in Higher Education, 2022
This paper combines a theoretical-based model with a data-driven approach to develop an Early Warning System that detects students who are more likely to dropout. The model uses innovative multilevel statistical and machine learning methods. The paper demonstrates the validity of the approach by applying it to administrative data from a leading…
Descriptors: Dropouts, Potential Dropouts, Dropout Prevention, Dropout Characteristics
Kelli A. Bird; Benjamin L. Castleman; Zachary Mabel; Yifeng Song – Annenberg Institute for School Reform at Brown University, 2021
Colleges have increasingly turned to predictive analytics to target at-risk students for additional support. Most of the predictive analytic applications in higher education are proprietary, with private companies offering little transparency about their underlying models. We address this lack of transparency by systematically comparing two…
Descriptors: At Risk Students, Higher Education, Predictive Measurement, Models
Gomes, Cristiano Mauro Assis; Almeida, Leandro S. – Practical Assessment, Research & Evaluation, 2017
Predictive studies have been widely undertaken in the field of education to provide strategic information about the extensive set of processes related to teaching and learning, as well as about what variables predict certain educational outcomes, such as academic achievement or dropout. As in any other area, there is a set of standard techniques…
Descriptors: Predictive Measurement, Statistical Analysis, Decision Making, Foreign Countries
Chen, Yu; Upah, Sylvester – Journal of College Student Retention: Research, Theory & Practice, 2020
Science, Technology, Engineering, and Mathematics student success is an important topic in higher education research. Recently, the use of data analytics in higher education administration has gain popularity. However, very few studies have examined how data analytics may influence Science, Technology, Engineering, and Mathematics student success.…
Descriptors: STEM Education, Academic Advising, Data Analysis, Majors (Students)
Jones, Kyle M. L. – Education and Information Technologies, 2019
Institutions are applying methods and practices from data analytics under the umbrella term of "learning analytics" to inform instruction, library practices, and institutional research, among other things. This study reports findings from interviews with professional advisors at a public higher education institution. It reports their…
Descriptors: Academic Advising, Instructional Systems, Library Services, Institutional Research
Gitinabard, Niki; Barnes, Tiffany; Heckman, Sarah; Lynch, Collin F. – International Educational Data Mining Society, 2019
Students' interactions with online tools can provide us with insights into their study and work habits. Prior research has shown that these habits, even as simple as the number of actions or the time spent on online platforms can distinguish between the higher performing students and low-performers. These habits are also often used to predict…
Descriptors: Blended Learning, Student Adjustment, Online Courses, Study Habits
Hao, Jinmei; Li, Suke – Journal of Education and Practice, 2017
With the adjustment of industrial structure of China in recent years, the market urgently needs different levels of professionals. Specialty education is an important part of higher education in China, has its unique advantages. Through the analysis of the history data of specialty education in our country, the result shows that the specialty…
Descriptors: Foreign Countries, Specialization, Specialists, Enrollment Trends
Milliron, Mark David; Malcolm, Laura; Kil, David – Research & Practice in Assessment, 2014
Civitas Learning was conceived as a community of practice, bringing together forward-thinking leaders from diverse higher education institutions to leverage insight and action analytics in their ongoing efforts to help students learn well and finish strong. We define insight and action analytics as drawing, federating, and analyzing data from…
Descriptors: Case Studies, Communities of Practice, Data Analysis, Higher Education
Conijn, Rianne; Snijders, Chris; Kleingeld, Ad; Matzat, Uwe – IEEE Transactions on Learning Technologies, 2017
With the adoption of Learning Management Systems (LMSs) in educational institutions, a lot of data has become available describing students' online behavior. Many researchers have used these data to predict student performance. This has led to a rather diverse set of findings, possibly related to the diversity in courses and predictor variables…
Descriptors: Blended Learning, Predictor Variables, Predictive Validity, Predictive Measurement
Riofrio-Luzcando, Diego; Ramirez, Jaime; Berrocal-Lobo, Marta – IEEE Transactions on Learning Technologies, 2017
Data mining is known to have a potential for predicting user performance. However, there are few studies that explore its potential for predicting student behavior in a procedural training environment. This paper presents a collective student model, which is built from past student logs. These logs are first grouped into clusters. Then, an…
Descriptors: Student Behavior, Predictive Validity, Predictor Variables, Predictive Measurement
Blikstein, Paulo; Worsley, Marcelo; Piech, Chris; Sahami, Mehran; Cooper, Steven; Koller, Daphne – Journal of the Learning Sciences, 2014
New high-frequency, automated data collection and analysis algorithms could offer new insights into complex learning processes, especially for tasks in which students have opportunities to generate unique open-ended artifacts such as computer programs. These approaches should be particularly useful because the need for scalable project-based and…
Descriptors: Programming, Computer Science Education, Learning Processes, Introductory Courses
Pascopella, Angela – District Administration, 2012
Predicting the future is now in the hands of K12 administrators. While for years districts have collected thousands of pieces of student data, educators have been using them only for data-driven decision-making or formative assessments, which give a "rear-view" perspective only. Now, using predictive analysis--the pulling together of data over…
Descriptors: Expertise, Prediction, Decision Making, Data
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
