NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Meng Xia; Robin Schmucker; Conrad Borchers; Vincent Aleven – Grantee Submission, 2025
Mastery learning improves learning proficiency and efficiency. However, the overpractice of skills--students spending time on skills they have already mastered--remains a fundamental challenge for tutoring systems. Previous research has reduced overpractice through the development of better problem selection algorithms and the authoring of focused…
Descriptors: Mastery Learning, Skill Development, Intelligent Tutoring Systems, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Meng, Qingquan; Jia, Jiyou; Zhang, Zhiyong – Interactive Technology and Smart Education, 2020
Purpose: The purpose of this study is to verify the effect of smart pedagogy to facilitate the high order thinking skills of students and to provide the design suggestion of curriculum and intelligent tutoring systems in smart education. Design/methodology/approach: A smart pedagogy framework was designed. The quasi-experiment was conducted in a…
Descriptors: Thinking Skills, Instructional Effectiveness, Technology Integration, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yuliani, Kiki; Saragih, Sahat – Journal of Education and Practice, 2015
The purpose of this research was to: 1) development of learning devices based guided discovery model in improving of understanding concept and critical thinking mathematically ability of students at Islamic Junior High School; 2) describe improvement understanding concept and critical thinking mathematically ability of students at MTs by using…
Descriptors: Concept Formation, Critical Thinking, Thinking Skills, Mathematics Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Baker, Ryan S. J. D.; Goldstein, Adam B.; Heffernan, Neil T. – International Journal of Artificial Intelligence in Education, 2011
Intelligent tutors have become increasingly accurate at detecting whether a student knows a skill, or knowledge component (KC), at a given time. However, current student models do not tell us exactly at which point a KC is learned. In this paper, we present a machine-learned model that assesses the probability that a student learned a KC at a…
Descriptors: Intelligent Tutoring Systems, Mastery Learning, Probability, Knowledge Level