Publication Date
In 2025 | 3 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 11 |
Descriptor
Artificial Intelligence | 11 |
Grade 8 | 10 |
Data Analysis | 8 |
Middle School Students | 6 |
Foreign Countries | 5 |
Prediction | 5 |
Predictor Variables | 5 |
Data Collection | 4 |
Grade 7 | 4 |
Intelligent Tutoring Systems | 4 |
Models | 4 |
More ▼ |
Source
Author
Desmarais, Michel, Ed. | 2 |
Adrian Grimm | 1 |
Ahmet Aypay | 1 |
Allan S. Cohen | 1 |
Barnes, Tiffany, Ed. | 1 |
Biswas, Gautam | 1 |
Chu, Man-Wai | 1 |
Cui, Ying | 1 |
Dennis C. L. Fung | 1 |
Fancsali, Stephen E. | 1 |
George Engelhard | 1 |
More ▼ |
Publication Type
Reports - Research | 9 |
Journal Articles | 8 |
Collected Works - Proceedings | 2 |
Speeches/Meeting Papers | 1 |
Tests/Questionnaires | 1 |
Education Level
Elementary Education | 11 |
Grade 8 | 11 |
Junior High Schools | 11 |
Middle Schools | 11 |
Secondary Education | 11 |
Grade 7 | 5 |
Grade 6 | 3 |
Intermediate Grades | 3 |
High Schools | 2 |
Higher Education | 2 |
Postsecondary Education | 2 |
More ▼ |
Audience
Location
North Carolina | 2 |
Australia | 1 |
Brazil | 1 |
Canada | 1 |
Czech Republic | 1 |
Germany | 1 |
Israel | 1 |
Massachusetts | 1 |
Netherlands | 1 |
Pennsylvania | 1 |
Slovakia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive… | 1 |
What Works Clearinghouse Rating
Jiawei Xiong; George Engelhard; Allan S. Cohen – Measurement: Interdisciplinary Research and Perspectives, 2025
It is common to find mixed-format data results from the use of both multiple-choice (MC) and constructed-response (CR) questions on assessments. Dealing with these mixed response types involves understanding what the assessment is measuring, and the use of suitable measurement models to estimate latent abilities. Past research in educational…
Descriptors: Responses, Test Items, Test Format, Grade 8
Wenyi Lu; Joseph Griffin; Troy D. Sadler; James Laffey; Sean P. Goggins – Journal of Learning Analytics, 2025
Game-based learning (GBL) is increasingly recognized as an effective tool for teaching diverse skills, particularly in science education, due to its interactive, engaging, and motivational qualities, along with timely assessments and intelligent feedback. However, more empirical studies are needed to facilitate its wider application in school…
Descriptors: Game Based Learning, Predictor Variables, Evaluation Methods, Educational Games
Munise Seçkin Kapucu; I?brahim Özcan; Hülya Özcan; Ahmet Aypay – International Journal of Technology in Education and Science, 2024
Our research aims to predict students' academic performance by considering the variables affecting academic performance in science courses using the deep learning method from machine learning algorithms and to determine the importance of independent variables affecting students' academic performance in science courses. 445 students from 5th, 6th,…
Descriptors: Secondary School Students, Science Achievement, Artificial Intelligence, Foreign Countries
Marcus Kubsch; Sebastian Strauß; Adrian Grimm; Sebastian Gombert; Hendrik Drachsler; Knut Neumann; Nikol Rummel – Educational Psychology Review, 2025
Recent research underscores the importance of inquiry learning for effective science education. Inquiry learning involves self-regulated learning (SRL), for example when students conduct investigations. Teachers face challenges in orchestrating and tracking student learning in such instruction; making it hard to adequately support students. Using…
Descriptors: Inquiry, Science Instruction, Electronic Books, Workbooks
Ndudi O. Ezeamuzie; Jessica S. C. Leung; Dennis C. L. Fung; Mercy N. Ezeamuzie – Journal of Computer Assisted Learning, 2024
Background: Computational thinking is derived from arguments that the underlying practices in computer science augment problem-solving. Most studies investigated computational thinking development as a function of learners' factors, instructional strategies and learning environment. However, the influence of the wider community such as educational…
Descriptors: Educational Policy, Predictor Variables, Computation, Thinking Skills
Fancsali, Stephen E.; Li, Hao; Sandbothe, Michael; Ritter, Steven – International Educational Data Mining Society, 2021
Recent work describes methods for systematic, data-driven improvement to instructional content and calls for diverse teams of learning engineers to implement and evaluate such improvements. Focusing on an approach called "design-loop adaptivity," we consider the problem of how developers might use data to target or prioritize particular…
Descriptors: Instructional Development, Instructional Improvement, Data Use, Educational Technology
Cui, Ying; Guo, Qi; Leighton, Jacqueline P.; Chu, Man-Wai – International Journal of Testing, 2020
This study explores the use of the Adaptive Neuro-Fuzzy Inference System (ANFIS), a neuro-fuzzy approach, to analyze the log data of technology-based assessments to extract relevant features of student problem-solving processes, and develop and refine a set of fuzzy logic rules that could be used to interpret student performance. The log data that…
Descriptors: Inferences, Artificial Intelligence, Data Analysis, Computer Assisted Testing
A Contextualized, Differential Sequence Mining Method to Derive Students' Learning Behavior Patterns
Kinnebrew, John S.; Loretz, Kirk M.; Biswas, Gautam – Journal of Educational Data Mining, 2013
Computer-based learning environments can produce a wealth of data on student learning interactions. This paper presents an exploratory data mining methodology for assessing and comparing students' learning behaviors from these interaction traces. The core algorithm employs a novel combination of sequence mining techniques to identify deferentially…
Descriptors: Data Analysis, Middle School Students, Information Retrieval, Student Behavior
Sabourin, Jennifer L.; Rowe, Jonathan P.; Mott, Bradford W.; Lester, James C. – Journal of Educational Data Mining, 2013
Over the past decade, there has been growing interest in real-time assessment of student engagement and motivation during interactions with educational software. Detecting symptoms of disengagement, such as off-task behavior, has shown considerable promise for understanding students' motivational characteristics during learning. In this paper, we…
Descriptors: Student Behavior, Classification, Learner Engagement, Data Analysis
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries