NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Levin, Nathan A. – Journal of Educational Data Mining, 2021
The Big Data for Education Spoke of the NSF Northeast Big Data Innovation Hub and ETS co-sponsored an educational data mining competition in which contestants were asked to predict efficient time use on the NAEP 8th grade mathematics computer-based assessment, based on the log file of a student's actions on a prior portion of the assessment. In…
Descriptors: Learning Analytics, Data Collection, Competition, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Guo, Hongwen; Zhang, Mo; Deane, Paul; Bennett, Randy E. – Journal of Educational Data Mining, 2020
This study investigates the effects of a scenario-based assessment design on students' writing processes. An experimental data set consisting of four design conditions was used in which the number of scenarios (one or two) and the placement of the essay task with respect to the lead-in tasks (first vs. last) were varied. Students' writing…
Descriptors: Instructional Effectiveness, Vignettes, Writing Processes, Learning Analytics