NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yumou Wei; Paulo Carvalho; John Stamper – International Educational Data Mining Society, 2025
Educators evaluate student knowledge using knowledge component (KC) models that map assessment questions to KCs. Still, designing KC models for large question banks remains an insurmountable challenge for instructors who need to analyze each question by hand. The growing use of Generative AI in education is expected only to aggravate this chronic…
Descriptors: Artificial Intelligence, Cluster Grouping, Student Evaluation, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Harold Doran; Testsuhiro Yamada; Ted Diaz; Emre Gonulates; Vanessa Culver – Journal of Educational Measurement, 2025
Computer adaptive testing (CAT) is an increasingly common mode of test administration offering improved test security, better measurement precision, and the potential for shorter testing experiences. This article presents a new item selection algorithm based on a generalized objective function to support multiple types of testing conditions and…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Jun-ichiro Yasuda; Michael M. Hull; Naohiro Mae; Kentaro Kojima – Physical Review Physics Education Research, 2025
Although conceptual assessment tests are commonly administered at the beginning and end of a semester, this pre-post approach has inherent limitations. Specifically, education researchers and instructors have limited ability to observe the progression of students' conceptual understanding throughout the course. Furthermore, instructors are limited…
Descriptors: Computer Assisted Testing, Adaptive Testing, Science Tests, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Michael Bass; Scott Morris; Sheng Zhang – Measurement: Interdisciplinary Research and Perspectives, 2025
Administration of patient-reported outcome measures (PROs), using multidimensional computer adaptive tests (MCATs) has the potential to reduce patient burden, but the efficiency of MCAT depends on the degree to which an individual's responses fit the psychometric properties of the assessment. Assessing patients' symptom burden through the…
Descriptors: Adaptive Testing, Computer Assisted Testing, Patients, Outcome Measures