Publication Date
| In 2026 | 0 |
| Since 2025 | 19 |
Descriptor
| Item Response Theory | 19 |
| Models | 16 |
| Evaluation Methods | 7 |
| Test Items | 7 |
| Simulation | 6 |
| Accuracy | 5 |
| Comparative Analysis | 4 |
| Difficulty Level | 4 |
| Item Analysis | 4 |
| Sample Size | 4 |
| Algorithms | 3 |
| More ▼ | |
Source
Author
| Benjamin W. Domingue | 2 |
| Joshua B. Gilbert | 2 |
| Abe D. Hofman | 1 |
| Agus Setiawan | 1 |
| Aiman Mohammad Freihat | 1 |
| Anders Sjöberg | 1 |
| Andreas Frey | 1 |
| Benjamin Goecke | 1 |
| Bogdan Yamkovenko | 1 |
| Boris Forthmann | 1 |
| Carl Westine | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 18 |
| Journal Articles | 16 |
| Speeches/Meeting Papers | 2 |
| Reports - Descriptive | 1 |
Education Level
| Secondary Education | 3 |
| Early Childhood Education | 1 |
| Elementary Education | 1 |
| Grade 2 | 1 |
| High Schools | 1 |
| Primary Education | 1 |
Audience
Location
| Indonesia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| National Longitudinal Study… | 1 |
| Program for International… | 1 |
What Works Clearinghouse Rating
Hanke Vermeiren; Abe D. Hofman; Maria Bolsinova – International Educational Data Mining Society, 2025
The traditional Elo rating system (ERS), widely used as a student model in adaptive learning systems, assumes unidimensionality (i.e., all items measure a single ability or skill), limiting its ability to handle multidimensional data common in educational contexts. In response, several multidimensional extensions of the Elo rating system have been…
Descriptors: Item Response Theory, Models, Comparative Analysis, Algorithms
Paul A. Jewsbury; J. R. Lockwood; Matthew S. Johnson – Large-scale Assessments in Education, 2025
Many large-scale assessments model proficiency with a latent regression on contextual variables. Item-response data are used to estimate the parameters of the latent variable model and are used in conjunction with the contextual data to generate plausible values of individuals' proficiency attributes. These models typically incorporate numerous…
Descriptors: Item Response Theory, Data Use, Models, Evaluation Methods
Qi Huang; Daniel M. Bolt; Xiangyi Liao – Journal of Educational Measurement, 2025
Item response theory (IRT) encompasses a broader class of measurement models than is commonly appreciated by practitioners in educational measurement. For measures of vocabulary and its development, we show how psychological theory might in certain instances support unipolar IRT modeling as a superior alternative to the more traditional bipolar…
Descriptors: Educational Theories, Item Response Theory, Vocabulary Development, Models
Bogdan Yamkovenko; Charlie A. R. Hogg; Maya Miller-Vedam; Phillip Grimaldi; Walt Wells – International Educational Data Mining Society, 2025
Knowledge tracing (KT) models predict how students will perform on future interactions, given a sequence of prior responses. Modern approaches to KT leverage "deep learning" techniques to produce more accurate predictions, potentially making personalized learning paths more efficacious for learners. Many papers on the topic of KT focus…
Descriptors: Algorithms, Artificial Intelligence, Models, Prediction
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Sohee Kim; Ki Lynn Cole – International Journal of Testing, 2025
This study conducted a comprehensive comparison of Item Response Theory (IRT) linking methods applied to a bifactor model, examining their performance on both multiple choice (MC) and mixed format tests within the common item nonequivalent group design framework. Four distinct multidimensional IRT linking approaches were explored, consisting of…
Descriptors: Item Response Theory, Comparative Analysis, Models, Item Analysis
Aiman Mohammad Freihat; Omar Saleh Bani Yassin – Educational Process: International Journal, 2025
Background/purpose: This study aimed to reveal the accuracy of estimation of multiple-choice test items parameters following the models of the item-response theory in measurement. Materials/methods: The researchers depended on the measurement accuracy indicators, which express the absolute difference between the estimated and actual values of the…
Descriptors: Accuracy, Computation, Multiple Choice Tests, Test Items
Kuan-Yu Jin; Wai-Lok Siu – Journal of Educational Measurement, 2025
Educational tests often have a cluster of items linked by a common stimulus ("testlet"). In such a design, the dependencies caused between items are called "testlet effects." In particular, the directional testlet effect (DTE) refers to a recursive influence whereby responses to earlier items can positively or negatively affect…
Descriptors: Models, Test Items, Educational Assessment, Scores
Mingfeng Xue; Ping Chen – Journal of Educational Measurement, 2025
Response styles pose great threats to psychological measurements. This research compares IRTree models and anchoring vignettes in addressing response styles and estimating the target traits. It also explores the potential of combining them at the item level and total-score level (ratios of extreme and middle responses to vignettes). Four models…
Descriptors: Item Response Theory, Models, Comparative Analysis, Vignettes
Boris Forthmann; Benjamin Goecke; Roger E. Beaty – Creativity Research Journal, 2025
Human ratings are ubiquitous in creativity research. Yet, the process of rating responses to creativity tasks -- typically several hundred or thousands of responses, per rater -- is often time-consuming and expensive. Planned missing data designs, where raters only rate a subset of the total number of responses, have been recently proposed as one…
Descriptors: Creativity, Research, Researchers, Research Methodology
Christina Glasauer; Martin K. Yeh; Lois Anne DeLong; Yu Yan; Yanyan Zhuang – Computer Science Education, 2025
Background and Context: Feedback on one's progress is essential to new programming language learners, particularly in out-of-classroom settings. Though many study materials offer assessment mechanisms, most do not examine the accuracy of the feedback they deliver, nor give evidence on its validity. Objective: We investigate the potential use of a…
Descriptors: Novices, Computer Science Education, Programming, Accuracy
Tong Wu; Stella Y. Kim; Carl Westine; Michelle Boyer – Journal of Educational Measurement, 2025
While significant attention has been given to test equating to ensure score comparability, limited research has explored equating methods for rater-mediated assessments, where human raters inherently introduce error. If not properly addressed, these errors can undermine score interchangeability and test validity. This study proposes an equating…
Descriptors: Item Response Theory, Evaluators, Error of Measurement, Test Validity
Joshua B. Gilbert; James G. Soland; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2025
Value-Added Models (VAMs) are both common and controversial in education policy and accountability research. While the sensitivity of VAMs to model specification and covariate selection is well documented, the extent to which test scoring methods (e.g., mean scores vs. IRT-based scores) may affect VA estimates is less studied. We examine the…
Descriptors: Value Added Models, Tests, Testing, Scoring
Erik Forsberg; Anders Sjöberg – Measurement: Interdisciplinary Research and Perspectives, 2025
This paper reports a validation study based on descriptive multidimensional item response theory (DMIRT), implemented in the R package "D3mirt" by using the ERS-C, an extended version of the Relevance subscale from the Moral Foundations Questionnaire including two new items for collectivism (17 items in total). Two latent models are…
Descriptors: Evaluation Methods, Programming Languages, Altruism, Collectivism
Hyo Jeong Shin; Christoph König; Frederic Robin; Andreas Frey; Kentaro Yamamoto – Journal of Educational Measurement, 2025
Many international large-scale assessments (ILSAs) have switched to multistage adaptive testing (MST) designs to improve measurement efficiency in measuring the skills of the heterogeneous populations around the world. In this context, previous literature has reported the acceptable level of model parameter recovery under the MST designs when the…
Descriptors: Robustness (Statistics), Item Response Theory, Adaptive Testing, Test Construction
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
