Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
Descriptor
Source
| Grantee Submission | 1 |
Author
| Conrad Borchers | 1 |
| Tianze Shou | 1 |
Publication Type
| Reports - Research | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Conrad Borchers; Tianze Shou – Grantee Submission, 2025
Large Language Models (LLMs) hold promise as dynamic instructional aids. Yet, it remains unclear whether LLMs can replicate the adaptivity of intelligent tutoring systems (ITS)--where student knowledge and pedagogical strategies are explicitly modeled. We propose a prompt variation framework to assess LLM-generated instructional moves' adaptivity…
Descriptors: Benchmarking, Computational Linguistics, Artificial Intelligence, Computer Software

Peer reviewed
Direct link
