NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Amanpreet Kaur; Kuljit Kaur Chahal – Education and Information Technologies, 2024
Research so far has overlooked the contribution of students' noncognitive factors to their performance in introductory programming in the context of personalized learning support. This study uses learning analytics to design and implement a Dashboard to understand the contribution of introductory programming students' learning motivation,…
Descriptors: Learning Analytics, Introductory Courses, Programming, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Denis Zhidkikh; Ville Heilala; Charlotte Van Petegem; Peter Dawyndt; Miitta Jarvinen; Sami Viitanen; Bram De Wever; Bart Mesuere; Vesa Lappalainen; Lauri Kettunen; Raija Hämäläinen – Journal of Learning Analytics, 2024
Predictive learning analytics has been widely explored in educational research to improve student retention and academic success in an introductory programming course in computer science (CS1). General-purpose and interpretable dropout predictions still pose a challenge. Our study aims to reproduce and extend the data analysis of a privacy-first…
Descriptors: Learning Analytics, Prediction, School Holding Power, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Xiuyu Lin; Zehui Zhan; Xuebo Zhang; Jiayi Xiong – IEEE Transactions on Learning Technologies, 2024
The attribution of learning success or failure is crucial for students' learning and motivation. Effective attribution of their learning success or failure in the context of a small private online course (SPOC) could generate students' motivation toward learning success while an incorrect attribution would lead to a sense of helplessness. Based on…
Descriptors: Learning Analytics, Learning Processes, Learning Motivation, Attribution Theory