Publication Date
In 2025 | 2 |
Since 2024 | 5 |
Descriptor
Computation | 3 |
Data Use | 2 |
Measurement | 2 |
Statistical Analysis | 2 |
Test Items | 2 |
Adaptive Testing | 1 |
Algorithms | 1 |
Artificial Intelligence | 1 |
Bayesian Statistics | 1 |
Benchmarking | 1 |
Classification | 1 |
More ▼ |
Source
Journal of Educational and… | 5 |
Author
Andrew D. Ho | 1 |
Daniel McNeish | 1 |
Elizabeth Tipton | 1 |
Hsiu-Yi Chao | 1 |
Jyun-Hong Chen | 1 |
Kaitlyn G. Fitzgerald | 1 |
Li Cai | 1 |
Roy Levy | 1 |
Sijia Huang | 1 |
Publication Type
Journal Articles | 5 |
Reports - Research | 4 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Cross-Classified Item Response Theory Modeling with an Application to Student Evaluation of Teaching
Sijia Huang; Li Cai – Journal of Educational and Behavioral Statistics, 2024
The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called…
Descriptors: Classification, Data Collection, Data Analysis, Item Response Theory
Kaitlyn G. Fitzgerald; Elizabeth Tipton – Journal of Educational and Behavioral Statistics, 2025
This article presents methods for using extant data to improve the properties of estimators of the standardized mean difference (SMD) effect size. Because samples recruited into education research studies are often more homogeneous than the populations of policy interest, the variation in educational outcomes can be smaller in these samples than…
Descriptors: Data Use, Computation, Effect Size, Meta Analysis
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Andrew D. Ho – Journal of Educational and Behavioral Statistics, 2024
I review opportunities and threats that widely accessible Artificial Intelligence (AI)-powered services present for educational statistics and measurement. Algorithmic and computational advances continue to improve approaches to item generation, scale maintenance, test security, test scoring, and score reporting. Predictable misuses of AI for…
Descriptors: Artificial Intelligence, Measurement, Educational Assessment, Technology Uses in Education
Jyun-Hong Chen; Hsiu-Yi Chao – Journal of Educational and Behavioral Statistics, 2024
To solve the attenuation paradox in computerized adaptive testing (CAT), this study proposes an item selection method, the integer programming approach based on real-time test data (IPRD), to improve test efficiency. The IPRD method turns information regarding the ability distribution of the population from real-time test data into feasible test…
Descriptors: Data Use, Computer Assisted Testing, Adaptive Testing, Design