NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sang-June Park; Youjae Yi – Journal of Educational and Behavioral Statistics, 2024
Previous research explicates ordinal and disordinal interactions through the concept of the "crossover point." This point is determined via simple regression models of a focal predictor at specific moderator values and signifies the intersection of these models. An interaction effect is labeled as disordinal (or ordinal) when the…
Descriptors: Interaction, Predictor Variables, Causal Models, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ernest C. Davenport Jr.; Mark L. Davison; Kyungin Park – Journal of Educational and Behavioral Statistics, 2024
The following study shows how reparameterizations and constraints of the general linear model can serve to parse quantitative and qualitative aspects of predictors. We demonstrate three different approaches. The study uses data from the High School Longitudinal Study of 2009 on mathematics course-taking and achievement as an example. Results show…
Descriptors: High School Students, Mathematics Instruction, Mathematics Achievement, Grade 9
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Michael Kane – ETS Research Report Series, 2023
Linear functional relationships are intended to be symmetric and therefore cannot generally be accurately estimated using ordinary least squares regression equations. Orthogonal regression (OR) models allow for errors in both "Y" and "X" and therefore can provide symmetric estimates of these relationships. The most…
Descriptors: Factor Analysis, Regression (Statistics), Mathematical Models, Relationship