NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20259
Since 2022 (last 5 years)26
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 26 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hsiao-Ping Hsu – TechTrends: Linking Research and Practice to Improve Learning, 2025
The advancement of large language model-based generative artificial intelligence (LLM-based GenAI) has sparked significant interest in its potential to address challenges in computational thinking (CT) education. CT, a critical problem-solving approach in the digital age, encompasses elements such as abstraction, iteration, and generalisation.…
Descriptors: Programming, Prompting, Computation, Thinking Skills
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Idir Saïdi; Nicolas Durand; Frédéric Flouvat – International Educational Data Mining Society, 2025
The aim of this paper is to provide tools to teachers for monitoring student work and understanding practices in order to help student and possibly adapt exercises in the future. In the context of an online programming learning platform, we propose to study the attempts (i.e., submitted programs) of the students for each exercise by using…
Descriptors: Programming, Online Courses, Visual Aids, Algorithms
Shraddha Govind Barke – ProQuest LLC, 2024
The dream of intelligent assistants to enhance programmer productivity has now become a concrete reality, with rapid advances in artificial intelligence. Large language models (LLMs) have demonstrated impressive capabilities in various domains based on the vast amount of data used to train them. However, tasks which require structured reasoning or…
Descriptors: Artificial Intelligence, Symbolic Learning, Programming, Programming Languages
Peer reviewed Peer reviewed
PDF on ERIC Download full text
John Paul P. Miranda; Jaymark A. Yambao – Journal of Education and Learning (EduLearn), 2025
This study explores the novice programmers' intention to use chat generative pretrained transformer (ChatGPT) for programming tasks with emphasis on performance expectancy (PE), risk-reward appraisal (RRA), and decision-making (DM). Utilizing partial least squares structural equation modeling (PLS-SEM) and a sample of 413 novice programmers, the…
Descriptors: Novices, Employees, Programming, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zifeng Liu; Wanli Xing; Chenglu Li; Fan Zhang; Hai Li; Victor Minces – Journal of Learning Analytics, 2025
Creativity is a vital skill in science, technology, engineering, and mathematics (STEM)-related education, fostering innovation and problem-solving. Traditionally, creativity assessments relied on human evaluations, such as the consensual assessment technique (CAT), which are resource-intensive, time-consuming, and often subjective. Recent…
Descriptors: Creativity, Elementary School Students, Artificial Intelligence, Man Machine Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Andrew Millam; Christine Bakke – Journal of Information Technology Education: Innovations in Practice, 2024
Aim/Purpose: This paper is part of a multi-case study that aims to test whether generative AI makes an effective coding assistant. Particularly, this work evaluates the ability of two AI chatbots (ChatGPT and Bing Chat) to generate concise computer code, considers ethical issues related to generative AI, and offers suggestions for how to improve…
Descriptors: Coding, Artificial Intelligence, Natural Language Processing, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Smitha S. Kumar; Michael A. Lones; Manuel Maarek; Hind Zantout – ACM Transactions on Computing Education, 2025
Programming demands a variety of cognitive skills, and mastering these competencies is essential for success in computer science education. The importance of formative feedback is well acknowledged in programming education, and thus, a diverse range of techniques has been proposed to generate and enhance formative feedback for programming…
Descriptors: Automation, Computer Science Education, Programming, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sukan Saeliang; Pinanta Chatwattana – International Education Studies, 2025
The project-based learning model via generative artificial intelligence, or PjBL model via Gen-AI, is a research tool that was initiated based on the concept of project-based learning management focusing mainly on self-directed learning, in which learners are able to learn and practice through the projects they are interested in as to their…
Descriptors: Active Learning, Student Projects, Artificial Intelligence, Man Machine Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Taskeen Hasrod; Yannick B. Nuapia; Hlanganani Tutu – Journal of Chemical Education, 2024
In order to improve the accessibility and user friendliness of an accurately pretrained stacking ensemble machine learning regressor used to predict sulfate levels (mg/L) in Acid Mine Drainage (AMD), a Graphical User Interface (GUI) was developed using Python by combining human input with ChatGPT and deployed in the Jupyter Notebook environment.…
Descriptors: Artificial Intelligence, Natural Language Processing, Educational Technology, Computer Software
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Victor-Alexandru Padurean; Tung Phung; Nachiket Kotalwar; Michael Liut; Juho Leinonen; Paul Denny; Adish Singla – International Educational Data Mining Society, 2025
The growing need for automated and personalized feedback in programming education has led to recent interest in leveraging generative AI for feedback generation. However, current approaches tend to rely on prompt engineering techniques in which predefined prompts guide the AI to generate feedback. This can result in rigid and constrained responses…
Descriptors: Automation, Student Writing Models, Feedback (Response), Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Jian Liao; Linrong Zhong; Longting Zhe; Handan Xu; Ming Liu; Tao Xie – IEEE Transactions on Learning Technologies, 2024
ChatGPT has received considerable attention in education, particularly in programming education because of its capabilities in automated code generation and program repairing and scoring. However, few empirical studies have investigated the use of ChatGPT to customize a learning system for scaffolding students' computational thinking. Therefore,…
Descriptors: Scaffolding (Teaching Technique), Thinking Skills, Computation, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
David Joyner, Editor; Benjamin Paaßen, Editor; Carrie Demmans Epp, Editor – International Educational Data Mining Society, 2024
The Georgia Institute of Technology is proud to host the seventeenth International Conference on Educational Data Mining (EDM) in Atlanta, Georgia, July 14-July 17, 2024. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New tools, new prospects, new risks--educational data…
Descriptors: Data Analysis, Pattern Recognition, Technology Uses in Education, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Donald M. Johnson; Will Doss; Christopher M. Estepp – Journal of Research in Technical Careers, 2024
A posttest-only control group experimental design compared novice Arduino programmers who developed their own programs (self-programming group, n = 17) with novice Arduino programmers who used ChatGPT 3.5 to write their programs (ChatGPT-programming group, n = 16) on the dependent variables of programming scores, interest in Arduino programming,…
Descriptors: Artificial Intelligence, Technology Uses in Education, Natural Language Processing, Novices
Lahiru Ariyananda – ProQuest LLC, 2022
DEVS (Discrete Event System Specification) is a formalism that was introduced in the mid-1970s by Bernard Zeigler, for modeling and analysis of discrete event systems. DEVS is essentially a formal mathematical language for specifying complex systems through models that can be simulated and has been executed in object-oriented software, DEVSJava…
Descriptors: Active Learning, Programming, Computer Software, Computer Science Education
Peer reviewed Peer reviewed
Priti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2023
This paper systematically explores how Large Language Models (LLMs) generate explanations of code examples of the type used in intro-to-programming courses. As we show, the nature of code explanations generated by LLMs varies considerably based on the wording of the prompt, the target code examples being explained, the programming language, the…
Descriptors: Computational Linguistics, Programming, Computer Science Education, Programming Languages
Previous Page | Next Page »
Pages: 1  |  2