NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20251
Since 2022 (last 5 years)52
Audience
Teachers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 52 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Aok, Yoki; Yawata, Kazushi – Physics Teacher, 2022
A new system for tracking a metal ball rolling on the slope of the touch panel of a tablet computer was developed. The widespread introduction of tablets in educational environments allows the use of a convenient dynamic measurement in schools.
Descriptors: Science Experiments, Measurement Techniques, Motion, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Fletcher, Kurtis A.; Lallier, Nicole M.; Masman, Jack M. – Physics Teacher, 2023
Inspired by a commercially produced scattering experiment that was popular beginning in the 1960s, we have developed a Nerf-projectile-based educational activity to demonstrate the basics of particle scattering experiments.
Descriptors: Science Experiments, Science Instruction, Physics, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Dorsel, Dominik; Staacks, Sebastian; Heinke, Heidrun; Stampfer, Christoph – Physics Teacher, 2022
As smartphones have become a part of our everyday life, their sensors have successfully been used to allow data acquisition with these readily available devices in a variety of different smartphone-based school experiments. Such experiments most commonly take advantage of the accelerometer and gyroscope. A less frequently used sensor in…
Descriptors: Handheld Devices, Measurement Equipment, Science Experiments, Navigation
Peer reviewed Peer reviewed
Direct linkDirect link
Coelho, Ricardo – Physics Teacher, 2022
Atwood invented a machine in the 1780s that enabled him to observe the motion of a falling body as slowly as desired. This machine was equipped with the necessary means to measure the distance covered by the body and the time taken. With this data, it was possible, in addition to studying the falling motion, to calculate the local gravitational…
Descriptors: Science Experiments, Scientific Concepts, Motion, Measurement Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Ng, Chiu-king – Physics Teacher, 2022
In this paper, we utilize the readily known theory of the ideal transformer to furnish a self-contained qualitative explanation on the AC-powered Thomson jumping ring (TJR) experiment.
Descriptors: Science Experiments, Science Instruction, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Palacios Gómez, Jesús; Villagómez, Roque André Eleazar Arroyo – Physics Teacher, 2023
Here, a relatively simple laboratory experiment of a physical pendulum, suitable for students of science and engineering in the first courses of university physics, is presented to illustrate its dynamic behavior and to determine its inertia moment. To this end, a long wooden rod of length L = 99.8 cm and cross-section radius R = 1.73 cm was used…
Descriptors: Physics, Science Instruction, Science Laboratories, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Çoban, Atakan; Erol, Mustafa – Physics Education, 2022
The present study reports an Arduino-based STEM education material that resolves the kinematics of a moving object, specifically focusing on two dimensional motion of the object. Throughout the work, a sample application that can be prepared in a classroom where students are active and including the acquisitions of Technology, Engineering, Physics…
Descriptors: STEM Education, Motion, Science Instruction, Measurement Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Lazos, Panagiotis; Nezis, Anastasios; Kyriazopoulos, Nikolaos – Physics Teacher, 2022
The interference pattern between two harmonic oscillations with slightly different frequencies are called beats. The beats, as a combined motion, have two different periods, one approximately equal to the period of the original oscillations, and another that is significantly longer and is related to the variable amplitude of the motion. The main…
Descriptors: Science Instruction, Physics, Motion, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod – Physics Education, 2022
A simple experiment is described to compare the descent time between two vertically separated points when an object slides down tracks of varying shape. A surprising result is that the descent time is shortest when it follows a circular track rather than a cycloidal track. Cycloidal tracks are usually predicted to result in the shortest descent…
Descriptors: Science Experiments, Scientific Concepts, Motion, Mechanics (Physics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jiraporn Poonyawatpornkul; Supranee Pitsamai; Onuma Methakesorn; Kotchakorn Mangmee – Journal of Learning for Development, 2025
This case study investigated the conceptual understanding of the Simple Pendulum topic amongst physics student-teachers using online experiments. A pre-experimental design was utilised, employing a one-group pretest-posttest approach with 20 student-teachers. The research instruments included a highspeed video activity conducted within Online…
Descriptors: Scientific Concepts, Motion, Physics, Preservice Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod – Physics Education, 2022
A loop-the-loop experiment is described to show how sliding friction affects motion of the ball. Conservation of energy can be used to explain the basic physics, but significant energy loss is observed in practice and expands the usefulness of this apparatus as a teaching tool.
Descriptors: Science Instruction, Science Experiments, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod – Physics Education, 2022
A loop-the-loop experiment usually involves a ball rolling around a vertical loop. A different version of the experiment is described where a nut was allowed to slide around a vertical loop. In both experiments there is a large decrease in kinetic energy when the ball or the nut first enters the loop.
Descriptors: Science Instruction, Science Experiments, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Dittrich, William A. – Physics Teacher, 2022
Drop Tower Physics (DTP) is composed of a set of experiments using standard physics lecture demonstration equipment, such as a pendulum, mass spring oscillator, and so forth, while videotaping them as they fall freely in the Dryden Drop Tower in Portland, OR. An article published in "The Physics Teacher" illustrated the behavior of a…
Descriptors: Physics, Science Instruction, Science Experiments, Science Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Ferstl, Andrew; Duden, Emily R. – Physics Teacher, 2022
The conical pendulum is a classic introductory physics problem for teaching circular motion--a topic about which students frequently carry alternative conceptions. As teachers provide lessons to untangle these conceptions, it is good to allow students to practice their new knowledge in varied settings. This is one possible experiment that builds…
Descriptors: Science Instruction, Motion, Mechanics (Physics), Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod – Physics Education, 2022
The trajectory of a ball rolling across an inclined plane was recorded on video film to determine if it followed a parabolic path as others have suggested. The challenges in this case were (a) to determine the magnitude and direction of the friction force on the ball, (b) to determine the effect of the friction force on the trajectory and (c) to…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4