NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Priti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2024
Assessing students' answers and in particular natural language answers is a crucial challenge in the field of education. Advances in transformer-based models such as Large Language Models (LLMs), have led to significant progress in various natural language tasks. Nevertheless, amidst the growing trend of evaluating LLMs across diverse tasks,…
Descriptors: Student Evaluation, Computer Assisted Testing, Artificial Intelligence, Comprehension
Peer reviewed Peer reviewed
Direct linkDirect link
Ishaya Gambo; Faith-Jane Abegunde; Omobola Gambo; Roseline Oluwaseun Ogundokun; Akinbowale Natheniel Babatunde; Cheng-Chi Lee – Education and Information Technologies, 2025
The current educational system relies heavily on manual grading, posing challenges such as delayed feedback and grading inaccuracies. Automated grading tools (AGTs) offer solutions but come with limitations. To address this, "GRAD-AI" is introduced, an advanced AGT that combines automation with teacher involvement for precise grading,…
Descriptors: Automation, Grading, Artificial Intelligence, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Mosquera, Jose Miguel Llanos; Suarez, Carlos Giovanny Hidalgo; Guerrero, Victor Andres Bucheli – Education and Information Technologies, 2023
This paper proposes to evaluate learning efficiency by implementing the flipped classroom and automatic source code evaluation based on the Kirkpatrick evaluation model in students of CS1 programming course. The experimentation was conducted with 82 students from two CS1 courses; an experimental group (EG = 56) and a control group (CG = 26). Each…
Descriptors: Flipped Classroom, Coding, Programming, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Fatima Abu Deeb; Timothy Hickey – Computer Science Education, 2024
Background and Context: Auto-graders are praised by novice students learning to program, as they provide them with automatic feedback about their problem-solving process. However, some students often make random changes when they have errors in their code, without engaging in deliberate thinking about the cause of the error. Objective: To…
Descriptors: Reflection, Automation, Grading, Novices
Sirazum Munira Tisha – ProQuest LLC, 2023
Most existing autograders used for grading programming assignments are based on unit testing, which is tedious to implement for programs with graphical output and does not allow testing for other code aspects, such as programming style or structure. We present a novel autograding approach based on machine learning that can successfully check the…
Descriptors: Computer Software, Grading, Programming, Assignments
Peer reviewed Peer reviewed
Direct linkDirect link
Ling Wang; Shen Zhan – Education Research and Perspectives, 2024
Generative Artificial Intelligence (GenAI) is transforming education, with assessment design emerging as a crucial area of innovation, particularly in computer science (CS) education. Effective assessment is critical for evaluating student competencies and guiding learning processes, yet traditional practices face significant challenges in CS…
Descriptors: Artificial Intelligence, Computer Science Education, Technology Uses in Education, Student Evaluation
Hubbard, Jane; Russo, James; Livy, Sharyn – Mathematics Education Research Group of Australasia, 2022
Making accurate judgements and interpretations about student growth and progress in mathematics can be problematic when using open-ended assessments. This study reports on the development of a class-based assessment instrument and marking key designed to assess Year 2 students' mathematics competence to reflect their learning of mathematics…
Descriptors: Mathematics Skills, Mathematics Instruction, Grading, Mathematics Tests