NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20256
Since 2022 (last 5 years)24
Audience
Researchers1
Laws, Policies, & Programs
Head Start1
Assessments and Surveys
ACT Assessment1
What Works Clearinghouse Rating
Showing 1 to 15 of 24 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Giora Alexandron; Aviram Berg; Jose A. Ruiperez-Valiente – IEEE Transactions on Learning Technologies, 2024
This article presents a general-purpose method for detecting cheating in online courses, which combines anomaly detection and supervised machine learning. Using features that are rooted in psychometrics and learning analytics literature, and capture anomalies in learner behavior and response patterns, we demonstrate that a classifier that is…
Descriptors: Cheating, Identification, Online Courses, Artificial Intelligence
Michael L. Chrzan; Francis A. Pearman; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2025
The increasing rate of permanent school closures in U.S. public school districts presents unprecedented challenges for administrators and communities alike. This study develops an early-warning indicator model to predict mass closure events -- defined as a district closing at least 10% of its schools -- five years in advance. Leveraging…
Descriptors: Artificial Intelligence, Electronic Learning, School Districts, School Closing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chaewon Lee; Lan Luo; Shelbi L. Kuhlmann; Robert D. Plumley; Abigail T. Panter; Matthew L. Bernacki; Jeffrey A. Greene; Kathleen M. Gates – Journal of Learning Analytics, 2025
The increasing use of learning management systems (LMSs) generates vast amounts of clickstream data, opening new avenues for predicting learner performance. Traditionally, LMS predictive analytics have relied on either supervised machine learning or Markov models to classify learners based on predicted learning outcomes. Machine learning excels at…
Descriptors: Electronic Learning, Prediction, Data Analysis, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Austin Wyman; Zhiyong Zhang – Grantee Submission, 2025
Automated detection of facial emotions has been an interesting topic for multiple decades in social and behavioral research but is only possible very recently. In this tutorial, we review three popular artificial intelligence based emotion detection programs that are accessible to R programmers: Google Cloud Vision, Amazon Rekognition, and…
Descriptors: Artificial Intelligence, Algorithms, Computer Software, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Zirou Lin; Hanbing Yan; Li Zhao – Journal of Computer Assisted Learning, 2024
Background: Peer assessment has played an important role in large-scale online learning, as it helps promote the effectiveness of learners' online learning. However, with the emergence of numerical grades and textual feedback generated by peers, it is necessary to detect the reliability of the large amount of peer assessment data, and then develop…
Descriptors: Peer Evaluation, Automation, Grading, Models
Kelli Bird – Association for Institutional Research, 2023
Colleges are increasingly turning to predictive analytics to identify "at-risk" students in order to target additional supports. While recent research demonstrates that the types of prediction models in use are reasonably accurate at identifying students who will eventually succeed or not, there are several other considerations for the…
Descriptors: Prediction, Data Analysis, Artificial Intelligence, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Kearney, Christopher A.; Childs, Joshua – Improving Schools, 2023
School attendance and absenteeism are critical targets of educational policies and practices that often depend heavily on aggregated attendance/absenteeism data. School attendance/absenteeism data in aggregated form, in addition to having suspect quality and utility, minimizes individual student variation, distorts detailed and multilevel…
Descriptors: Data Analysis, Attendance, Educational Policy, Causal Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Selma Tosun; Dilara Bakan Kalaycioglu – Journal of Educational Technology and Online Learning, 2024
Predicting and improving the academic achievement of university students is a multifactorial problem. Considering the low success rates and high dropout rates, particularly in open education programs characterized by mass enrollment, academic success is an important research area with its causes and consequences. This study aimed to solve a…
Descriptors: Academic Achievement, Open Education, Distance Education, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Qixuan Wu; Hyung Jae Chang; Long Ma – Journal of Advanced Academics, 2025
It is very important to identify talented students as soon as they are admitted to college so that appropriate resources are provided and allocated to them to optimize and excel in their education. Currently, this process is labor-intensive and time-consuming, as it involves manual reviews of each student's academic record. This raises the…
Descriptors: Electronic Learning, Artificial Intelligence, Technology Uses in Education, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matsuda, Noboru; Wood, Jesse; Shrivastava, Raj; Shimmei, Machi; Bier, Norman – Journal of Educational Data Mining, 2022
A model that maps the requisite skills, or knowledge components, to the contents of an online course is necessary to implement many adaptive learning technologies. However, developing a skill model and tagging courseware contents with individual skills can be expensive and error prone. We propose a technology to automatically identify latent…
Descriptors: Skills, Models, Identification, Courseware
Peer reviewed Peer reviewed
Direct linkDirect link
Heilmann, John; Miller, Jon F. – Perspectives of the ASHA Special Interest Groups, 2023
Purpose: In the early 1980s, researchers and speech-language pathologists (SLPs) collaborated to develop the Systematic Analysis of Language Transcripts (SALT). Research and development over the ensuing decades has culminated into SALT Solutions, a set of tools to assist SLPs to efficiently complete language sample analysis (LSA) with their…
Descriptors: Sampling, Language Usage, Data Analysis, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
J. Bryan Osborne; Andrew S. I. D. Lang – Journal of Postsecondary Student Success, 2023
This paper describes a neural network model that can be used to detect at- risk students failing a particular course using only grade book data from a learning management system. By analyzing data extracted from the learning management system at the end of week 5, the model can predict with an accuracy of 88% whether the student will pass or fail…
Descriptors: Identification, At Risk Students, Learning Management Systems, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Cheng, Ying; Shao, Can – Educational and Psychological Measurement, 2022
Computer-based and web-based testing have become increasingly popular in recent years. Their popularity has dramatically expanded the availability of response time data. Compared to the conventional item response data that are often dichotomous or polytomous, response time has the advantage of being continuous and can be collected in an…
Descriptors: Reaction Time, Test Wiseness, Computer Assisted Testing, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Qi, Xinyue; Zhou, Shouhao; Wang, Yucai; Peterson, Christine – Research Synthesis Methods, 2022
Meta-analysis allows researchers to combine evidence from multiple studies, making it a powerful tool for synthesizing information on the safety profiles of new medical interventions. There is a critical need to identify subgroups at high risk of experiencing treatment-related toxicities. However, this remains quite challenging from a statistical…
Descriptors: Bayesian Statistics, Identification, Meta Analysis, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
J. J. Cutuli; Sandra Torres Suarez; Aaron Truchil; Tyler Yost; Ciani Flack-Green – Educational Researcher, 2024
We tested 10 data-based strategies to better identify student homelessness in Camden City School District, which has a student body from minoritized backgrounds. We operationalized strategies through a research-practice partnership, following the federal homelessness definition. Data span 5 years (2014-15 through 2018-19), including integrated…
Descriptors: Urban Schools, Homeless People, Identification, Data Analysis
Previous Page | Next Page »
Pages: 1  |  2