Publication Date
| In 2026 | 0 |
| Since 2025 | 13 |
| Since 2022 (last 5 years) | 90 |
Descriptor
| Algorithms | 90 |
| Learning Analytics | 90 |
| Artificial Intelligence | 40 |
| Prediction | 35 |
| Models | 23 |
| Accuracy | 22 |
| Computer Software | 19 |
| Academic Achievement | 17 |
| Learning Management Systems | 17 |
| Classification | 16 |
| Learning Processes | 15 |
| More ▼ | |
Source
Author
| Amisha Jindal | 3 |
| Ashish Gurung | 3 |
| Erin Ottmar | 3 |
| Ji-Eun Lee | 3 |
| Reilly Norum | 3 |
| Sanika Nitin Patki | 3 |
| Baker, Ryan S. | 2 |
| Lieven De Marez | 2 |
| Linxuan Zhao | 2 |
| Lixiang Yan | 2 |
| Marijn Martens | 2 |
| More ▼ | |
Publication Type
| Journal Articles | 75 |
| Reports - Research | 72 |
| Reports - Evaluative | 8 |
| Speeches/Meeting Papers | 8 |
| Reports - Descriptive | 5 |
| Dissertations/Theses -… | 4 |
| Tests/Questionnaires | 2 |
| Information Analyses | 1 |
Education Level
Audience
Location
| China | 2 |
| Massachusetts (Boston) | 2 |
| United States | 2 |
| Africa | 1 |
| Asia | 1 |
| Australia | 1 |
| Belgium | 1 |
| Estonia | 1 |
| Europe | 1 |
| Indonesia | 1 |
| Japan | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Motivated Strategies for… | 1 |
| National Assessment Program… | 1 |
What Works Clearinghouse Rating
Oscar Blessed Deho; Lin Liu; Jiuyong Li; Jixue Liu; Chen Zhan; Srecko Joksimovic – IEEE Transactions on Learning Technologies, 2024
Learning analytics (LA), like much of machine learning, assumes the training and test datasets come from the same distribution. Therefore, LA models built on past observations are (implicitly) expected to work well for future observations. However, this assumption does not always hold in practice because the dataset may drift. Recently,…
Descriptors: Learning Analytics, Ethics, Algorithms, Models
Xiaona Xia – Interactive Learning Environments, 2023
Effective analysis and demonstration of these data features is of great significance for the optimization of interactive learning environment and learning behavior. Therefore, we take the big data set of learning behavior generated by an online interactive learning environment as the research object, define the features of learning behavior, and…
Descriptors: Learning Strategies, Interaction, Educational Environment, Learning Analytics
Kim, Yunsung; Sreechan; Piech, Chris; Thille, Candace – International Educational Data Mining Society, 2023
Dynamic Item Response Models extend the standard Item Response Theory (IRT) to capture temporal dynamics in learner ability. While these models have the potential to allow instructional systems to actively monitor the evolution of learner proficiency in real time, existing dynamic item response models rely on expensive inference algorithms that…
Descriptors: Item Response Theory, Accuracy, Inferences, Algorithms
Ouyang, Fan; Xu, Weiqi; Cukurova, Mutlu – International Journal of Computer-Supported Collaborative Learning, 2023
Collaborative problem solving (CPS) enables student groups to complete learning tasks, construct knowledge, and solve problems. Previous research has argued the importance of examining the complexity of CPS, including its multimodality, dynamics, and synergy from the complex adaptive systems perspective. However, there is limited empirical…
Descriptors: Artificial Intelligence, Learning Analytics, Cooperative Learning, Problem Solving
Peer reviewedParian Haghighat; Denisa Gandara; Lulu Kang; Hadis Anahideh – Grantee Submission, 2024
Predictive analytics is widely used in various domains, including education, to inform decision-making and improve outcomes. However, many predictive models are proprietary and inaccessible for evaluation or modification by researchers and practitioners, limiting their accountability and ethical design. Moreover, predictive models are often opaque…
Descriptors: Prediction, Learning Analytics, Multivariate Analysis, Regression (Statistics)
Senay Kocakoyun Aydogan; Turgut Pura; Fatih Bingül – Malaysian Online Journal of Educational Technology, 2024
In every culture and era, education is considered the most fundamental reality and rule that societies prioritize and deem essential. Throughout the process spanning thousands of years, from the emergence of writing to the present day, education has undergone various forms and formats of change. Education has been a continuous guide for shaping,…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Jyoti Prakash Meher; Rajib Mall – IEEE Transactions on Education, 2025
Contribution: This article suggests a novel method for diagnosing a learner's cognitive proficiency using deep neural networks (DNNs) based on her answers to a series of questions. The outcome of the forecast can be used for adaptive assistance. Background: Often a learner spends considerable amounts of time in attempting questions on the concepts…
Descriptors: Cognitive Ability, Assistive Technology, Adaptive Testing, Computer Assisted Testing
Zixuan Ke – ProQuest LLC, 2024
The essence of human intelligence lies in its ability to learn continuously, accumulating past knowledge to aid in future learning and problem-solving endeavors. In contrast, the current machine learning paradigm often operates in isolation, lacking the capacity for continual learning and adaptation. This deficiency becomes apparent in the face of…
Descriptors: Computational Linguistics, Computer Software, Barriers, Artificial Intelligence
Smithers, Laura – Learning, Media and Technology, 2023
This article examines the work of predictive analytics in shaping the social worlds in which they thrive, and in particular the world of the first year of Great State University's student success initiative. Specifically, this article investigates the following research paradox: predictive analytics, as driven by a logic premised on predicting the…
Descriptors: Prediction, Learning Analytics, Academic Achievement, College Students
Marijn Martens; Ralf De Wolf; Lieven De Marez – Technology, Knowledge and Learning, 2025
Algorithmic decision-making systems such as Learning Analytics (LA) are widely used in an educational setting ranging from kindergarten to university. Most research focuses on how LA is used and adopted by teachers. However, the perspective of students and parents who experience the (in)direct consequences of these systems is underexplored. This…
Descriptors: Algorithms, Decision Making, Learning Analytics, Secondary School Students
Sonsoles Lopez-Pernas; Kamila Misiejuk; Rogers Kaliisa; Mohammed Saqr – IEEE Transactions on Learning Technologies, 2025
Despite the growing use of large language models (LLMs) in educational contexts, there is no evidence on how these can be operationalized by students to generate custom datasets suitable for teaching and learning. Moreover, in the context of network science, little is known about whether LLMs can replicate real-life network properties. This study…
Descriptors: Students, Artificial Intelligence, Man Machine Systems, Interaction
Raymond A. Opoku; Bo Pei; Wanli Xing – Journal of Learning Analytics, 2025
While high-accuracy machine learning (ML) models for predicting student learning performance have been widely explored, their deployment in real educational settings can lead to unintended harm if the predictions are biased. This study systematically examines the trade-offs between prediction accuracy and fairness in ML models trained on the…
Descriptors: Prediction, Accuracy, Electronic Learning, Artificial Intelligence
Xiaona Xia; Tianjiao Wang – Asia-Pacific Education Researcher, 2024
The artificial intelligence methods might be applied to see through the education problems, and make effective prediction and decision. The transformation from data to decision are inseparable from the learning analytics. In order to solve the dynamic multi-objective decision problems, a decision learning algorithm is designed to analyze the…
Descriptors: Learning, Behavior, Achievement, Learning Analytics
Anagha Vaidya; Sarika Sharma – Interactive Technology and Smart Education, 2024
Purpose: Course evaluations are formative and are used to evaluate learnings of the students for a course. Anomalies in the evaluation process can lead to a faulty educational outcome. Learning analytics and educational data mining provide a set of techniques that can be conveniently applied to extensive data collected as part of the evaluation…
Descriptors: Course Evaluation, Learning Analytics, Formative Evaluation, Information Retrieval
Shabnam Ara S. J.; Tanuja Ramachandriah; Manjula S. Haladappa – Online Learning, 2025
Predicting learner performance with precision is critical within educational systems, offering a basis for tailored interventions and instruction. The advent of big data analytics presents an opportunity to employ Machine Learning (ML) techniques to this end. Real-world data availability is often hampered by privacy concerns, prompting a shift…
Descriptors: Learning Analytics, Privacy, Artificial Intelligence, Regression (Statistics)

Direct link
