Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 8 |
Descriptor
Source
| International Journal of… | 8 |
Author
| April Murphy | 1 |
| Ashish Gurung | 1 |
| Bill Roberts | 1 |
| Boyer, Kristy Elizabeth | 1 |
| Carlos Alario-Hoyos | 1 |
| Carlos Delgado Kloos | 1 |
| Danielle R. Thomas | 1 |
| Diego Dermeval | 1 |
| Eglington, Luke G. | 1 |
| Freeman, Jason | 1 |
| Geiser C. Challco | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 8 |
| Reports - Research | 6 |
| Reports - Evaluative | 2 |
Education Level
| Elementary Education | 1 |
| Elementary Secondary Education | 1 |
| Higher Education | 1 |
| Postsecondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Owen Henkel; Hannah Horne-Robinson; Libby Hills; Bill Roberts; Josh McGrane – International Journal of Artificial Intelligence in Education, 2025
This paper reports on a set of three recent experiments utilizing large-scale speech models to assess the oral reading fluency (ORF) of students in Ghana. While ORF is a well-established measure of foundational literacy, assessing it typically requires one-on-one sessions between a student and a trained rater, a process that is time-consuming and…
Descriptors: Foreign Countries, Oral Reading, Reading Fluency, Literacy
Jionghao Lin; Zifei Han; Danielle R. Thomas; Ashish Gurung; Shivang Gupta; Vincent Aleven; Kenneth R. Koedinger – International Journal of Artificial Intelligence in Education, 2025
One-on-one tutoring is widely acknowledged as an effective instructional method, conditioned on qualified tutors. However, the high demand for qualified tutors remains a challenge, often necessitating the training of novice tutors (i.e., trainees) to ensure effective tutoring. Research suggests that providing timely explanatory feedback can…
Descriptors: Artificial Intelligence, Technology Uses in Education, Tutor Training, Trainees
Luiz Rodrigues; Guilherme Guerino; Thomaz E. V. Silva; Geiser C. Challco; Lívia Oliveira; Rodolfo S. da Penha; Rafael F. Melo; Thales Vieira; Marcelo Marinho; Valmir Macario; Ig I. Bittencourt; Diego Dermeval; Seiji Isotani – International Journal of Artificial Intelligence in Education, 2025
Intelligent Tutoring Systems (ITS) possess significant potential to enhance learning outcomes. However, deploying ITSs in global south countries presents challenges due to their frequent lack of essential technological resources, such as computers and internet access. The concept of AIED Unplugged has emerged to bridge this digital divide,…
Descriptors: Teacher Attitudes, Intelligent Tutoring Systems, Numeracy, Mathematics Education
Eglington, Luke G.; Pavlik, Philip I., Jr. – International Journal of Artificial Intelligence in Education, 2023
An important component of many Adaptive Instructional Systems (AIS) is a 'Learner Model' intended to track student learning and predict future performance. Predictions from learner models are frequently used in combination with mastery criterion decision rules to make pedagogical decisions. Important aspects of learner models, such as learning…
Descriptors: Computer Assisted Instruction, Intelligent Tutoring Systems, Learning Processes, Individual Differences
Griffith, Amanda E.; Katuka, Gloria Ashiya; Wiggins, Joseph B.; Boyer, Kristy Elizabeth; Freeman, Jason; Magerko, Brian; McKlin, Tom – International Journal of Artificial Intelligence in Education, 2023
Collaborative learning offers numerous benefits to learners, largely due to the dialogue that is unfolding between them. However, there is still much to learn about the structure of collaborative dialogue, and especially little is known about co-creative dialogues during learning. This paper reports on a study with learners engaged in co-creative…
Descriptors: Cooperative Learning, Dialogs (Language), Coding, Student Satisfaction
Schneider, Johannes; Richner, Robin; Riser, Micha – International Journal of Artificial Intelligence in Education, 2023
Autograding short textual answers has become much more feasible due to the rise of NLP and the increased availability of question-answer pairs brought about by a shift to online education. Autograding performance is still inferior to human grading. The statistical and black-box nature of state-of-the-art machine learning models makes them…
Descriptors: Grading, Natural Language Processing, Computer Assisted Testing, Ethics
Iria Estévez-Ayres; Patricia Callejo; Miguel Ángel Hombrados-Herrera; Carlos Alario-Hoyos; Carlos Delgado Kloos – International Journal of Artificial Intelligence in Education, 2025
The emergence of Large Language Models (LLMs) has marked a significant change in education. The appearance of these LLMs and their associated chatbots has yielded several advantages for both students and educators, including their use as teaching assistants for content creation or summarisation. This paper aims to evaluate the capacity of LLMs…
Descriptors: Artificial Intelligence, Natural Language Processing, Computer Mediated Communication, Technology Uses in Education
Kole A. Norberg; Husni Almoubayyed; Logan De Ley; April Murphy; Kyle Weldon; Steve Ritter – International Journal of Artificial Intelligence in Education, 2025
Large language models (LLMs) offer an opportunity to make large-scale changes to educational content that would otherwise be too costly to implement. The work here highlights how LLMs (in particular GPT-4) can be prompted to revise educational math content ready for large scale deployment in real-world learning environments. We tested the ability…
Descriptors: Artificial Intelligence, Computer Software, Computational Linguistics, Educational Change

Peer reviewed
Direct link
