NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Fangxing Bai; Ben Kelcey; Yanli Xie; Kyle Cox – Journal of Experimental Education, 2025
Prior research has suggested that clustered regression discontinuity designs are a formidable alternative to cluster randomized designs because they provide targeted treatment assignment while maintaining a high-quality basis for inferences on local treatment effects. However, methods for the design and analysis of clustered regression…
Descriptors: Regression (Statistics), Statistical Analysis, Research Design, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Hsin-Yun Lee; You-Lin Chen; Li-Jen Weng – Journal of Experimental Education, 2024
The second version of Kaiser's Measure of Sampling Adequacy (MSA[subscript 2]) has been widely applied to assess the factorability of data in psychological research. The MSA[subscript 2] is developed in the population and little is known about its behavior in finite samples. If estimated MSA[subscript 2]s are biased due to sampling errors,…
Descriptors: Error of Measurement, Reliability, Sampling, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Yi, Zhiyao; Chen, Yi-Hsin; Yin, Yue; Cheng, Ke; Wang, Yan; Nguyen, Diep; Pham, Thanh; Kim, EunSook – Journal of Experimental Education, 2022
A simulation study was conducted to examine the efficacy of nine frequently-used HOV tests, including Levene's tests with squared residuals and with absolute residuals, Brown and Forsythe (BF) test, Bootstrap BF test, O'Brien test, Z-variance test, Box-ScheffĂ© (BS) test, Bartlett test, and Pseudo jackknife test under comprehensive simulation…
Descriptors: Statistical Analysis, Robustness (Statistics), Sampling, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Ting Dai; Yang Du; Jennifer Cromley; Tia Fechter; Frank Nelson – Journal of Experimental Education, 2024
Simple matrix sampling planned missing (SMS PD) design, introduce missing data patterns that lead to covariances between variables that are not jointly observed, and create difficulties for analyses other than mean and variance estimations. Based on prior research, we adopted a new multigroup confirmatory factor analysis (CFA) approach to handle…
Descriptors: Research Problems, Research Design, Data, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Zuchao; Kelcey, Benjamin – Journal of Experimental Education, 2022
Optimal design of multisite randomized trials leverages sampling costs to optimize sampling ratios and ultimately identify more efficient and powerful designs. Past implementations of the optimal design framework have assumed that costs of sampling units are equal across treatment conditions. In this study, we developed a more flexible optimal…
Descriptors: Randomized Controlled Trials, Sampling, Research Design, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Bulus, Metin; Dong, Nianbo – Journal of Experimental Education, 2021
Sample size determination in multilevel randomized trials (MRTs) and multilevel regression discontinuity designs (MRDDs) can be complicated due to multilevel structure, monetary restrictions, differing marginal costs per treatment and control units, and range restrictions in sample size at one or more levels. These issues have sparked a set of…
Descriptors: Sampling, Research Methodology, Costs, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Jia, Yuane; Konold, Timothy – Journal of Experimental Education, 2021
Traditional observed variable multilevel models for evaluating indirect effects are limited by their inability to quantify measurement and sampling error. They are further restricted by being unable to fully separate within- and between-level effects without bias. Doubly latent models reduce these biases by decomposing the observed within-level…
Descriptors: Hierarchical Linear Modeling, Educational Environment, Aggression, Bullying